## variational approximation to empirical likelihood ABC

Posted in Statistics with tags , , , , , , , , , , , , , , , , , , on October 1, 2021 by xi'an

Sanjay Chaudhuri and his colleagues from Singapore arXived last year a paper on a novel version of empirical likelihood ABC that I hadn’t yet found time to read. This proposal connects with our own, published with Kerrie Mengersen and Pierre Pudlo in 2013 in PNAS. It is presented as an attempt at approximating the posterior distribution based on a vector of (summary) statistics, the variational approximation (or information projection) appearing in the construction of the sampling distribution of the observed summary. (Along with a weird eyed-g symbol! I checked inside the original LaTeX file and it happens to be a mathbbmtt g, that is, the typewriter version of a blackboard computer modern g…) Which writes as an entropic correction of the true posterior distribution (in Theorem 1).

“First, the true log-joint density of the observed summary, the summaries of the i.i.d. replicates and the parameter have to be estimated. Second, we need to estimate the expectation of the above log-joint density with respect to the distribution of the data generating process. Finally, the differential entropy of the data generating density needs to be estimated from the m replicates…”

The density of the observed summary is estimated by empirical likelihood, but I do not understand the reasoning behind the moment condition used in this empirical likelihood. Indeed the moment made of the difference between the observed summaries and the observed ones is zero iff the true value of the parameter is used in the simulation. I also fail to understand the connection with our SAME procedure (Doucet, Godsill & X, 2002), in that the empirical likelihood is based on a sample made of pairs (observed,generated) where the observed part is repeated m times, indeed, but not with the intent of approximating a marginal likelihood estimator… The notion of using the actual data instead of the true expectation (i.e. as a unbiased estimator) at the true parameter value is appealing as it avoids specifying the exact (or analytical) value of this expectation (as in our approach), but I am missing the justification for the extension to any parameter value. Unless one uses an ancillary statistic, which does not sound pertinent… The differential entropy is estimated by a Kozachenko-Leonenko estimator implying k-nearest neighbours.

“The proposed empirical likelihood estimates weights by matching the moments of g(X¹), , g(X) with that of
g(X), without requiring a direct relationship with the parameter. (…) the constraints used in the construction of the empirical likelihood are based on the identity in (7), which can only be satisfied when θ = θ⁰. “

Although I am feeling like missing one argument, the later part of the paper seems to comfort my impression, as quoted above. Meaning that the approximation will fare well only in the vicinity of the true parameter. Which makes it untrustworthy for model choice purposes, I believe. (The paper uses the g-and-k benchmark without exploiting Pierre Jacob’s package that allows for exact MCMC implementation.)

## IMS workshop [day 5]

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , on September 3, 2018 by xi'an

The last day of the starting workshop [and my last day in Singapore] was a day of importance [sampling] with talks by Matti Vihola opposing importance sampling and delayed acceptance and particle MCMC, related to several papers of his that I missed. To be continued in the coming weeks at the IMS, which is another reason to regret having to leave that early [as my Parisian semester starts this Monday with an undergrad class at 8:30!]

And then a talk by Joaquín Miguez on stabilizing importance sampling by truncation which reminded me very much of the later work by Andrew Gelman and Aki Vehtari on Pareto smoothed importance sampling, with further operators adapted to sequential settings and the similar drawback that when the importance sampler is poor, i.e., when the simulated points are all very far from the centre of mass, no amount of fudging with the weights will bring the points closer. AMIS made an appearance as a reference method, to be improved by this truncation of the weights, a wee bit surprising as it should bring the large weights of the earlier stages down.

Followed by an almost silent talk by Nick Whiteley, who having lost his voice to the air conditioning whispered his talk in the microphone. Having once faced a lost voice during an introductory lecture to a large undergraduate audience, I could not but completely commiserate for the hardship of the task. Although this made the audience most silent and attentive. His topic was the Viterbi process and its parallelisation, by using a truncated horizon (presenting connection with overdamped Langevin, eg Durmus and Moulines and Dalalyan).

And due to a pressing appointment with my son and his girlfriend [who were traveling through Singapore on that day] for a chili crab dinner on my way to the airport, I missed the final talk by Arnaud Doucet, where he was to reconsider PDMP algorithms without the continuous time layer, a perspective I find most appealing!

Overall, this was a quite diverse and rich [starting] seminar, backed by the superb organisation of the IMS and the smooth living conditions on the NUS campus [once I had mastered the bus routes], which would have made much more sense for me as part of a longer stay, which is actually what happened the previous time I visited the IMS (in 2005), again clashing with my course schedule at home… And as always, I am impressed with the city-state of Singapore, for the highly diverse food scene in particular, but also this [maybe illusory] impression of coexistence between communities. And even though the ecological footprint could certainly be decreased, measures to curb car ownership (with a 150% purchase tax) and use (with congestion charges).

## IMS workshop [day 4]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , on August 31, 2018 by xi'an

While I did not repeat the mistake of yesterday morning, just as well because the sun was unbearably strong!, I managed this time to board a bus headed in the wrong direction and as a result went through several remote NUS campi! Missing the first talk of the day as a result. By Youssef Marzouk, with a connection between sequential Monte Carlo and optimal transport. Transport for sampling, that is. The following talk by Tiangang Cui was however related, with Marzouk a co-author, as it aimed at finding linear transforms towards creating Normal approximations to the target to be used as proposals in Metropolis algorithms. Which may sound like something already tried a zillion times in the MCMC literature, except that the setting was rather specific to some inverse problems, imposing a generalised Normal structure on the transform, then optimised by transport arguments. It is unclear to me [from just attending the talk] how complex this derivation is and how dimension steps in, but the produced illustrations were quite robust to an increase in dimension.

The remaining talks for the day were mostly particular, from Anthony Lee introducing a new and almost costless way of producing variance estimates in particle filters, exploiting only the ancestry of particles, to Mike Pitt discussing the correlated pseudo-marginal algorithm developed with George Deligiannidis and Arnaud Doucet. Which somewhat paradoxically managed to fight the degeneracy [i.e., the need for a number of terms increasing like the time index T] found in independent pseudo-marginal resolutions, moving down to almost log(T)… With an interesting connection to the quasi SMC approach of Mathieu and Nicolas. And Sebastian Reich also stressed the links with optimal transport in a talk about data assimilation that was way beyond my reach. The day concluded with fireworks, through a magistral lecture by Professeur Del Moral on a continuous time version of PMCMC using the Feynman-Kac terminology. Pierre did a superb job during his lecture towards leading the whole room to the conclusion.

## IMS workshop [day 3]

Posted in pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , on August 30, 2018 by xi'an

I made the “capital” mistake of walking across the entire NUS campus this morning, which is quite green and pretty, but which almost enjoys an additional dimension brought by such an intense humidity that one feels having to get around this humidity!, a feature I have managed to completely erase from my memory of my previous visit there. Anyway, nothing of any relevance. oNE talk in the morning was by Markus Eisenbach on tools used by physicists to speed up Monte Carlo methods, like the Wang-Landau flat histogram, towards computing the partition function, or the distribution of the energy levels, definitely addressing issues close to my interest, but somewhat beyond my reach for using a different language and stress, as often in physics. (I mean, as often in physics talks I attend.) An idea that came out clear to me was to bypass a (flat) histogram target and aim directly at a constant slope cdf for the energy levels. (But got scared away by the Fourier transforms!)

Lawrence Murray then discussed some features of the Birch probabilistic programming language he is currently developing, especially a fairly fascinating concept of delayed sampling, which connects with locally-optimal proposals and Rao Blackwellisation. Which I plan to get back to later [and hopefully sooner than later!].

In the afternoon, Maria de Iorio gave a talk about the construction of nonparametric priors that create dependence between a sequence of functions, a notion I had not thought of before, with an array of possibilities when using the stick breaking construction of Dirichlet processes.

And Christophe Andrieu gave a very smooth and helpful entry to partly deterministic Markov processes (PDMP) in preparation for talks he is giving next week for the continuation of the workshop at IMS. Starting with the guided random walk of Gustafson (1998), which extended a bit later into the non-reversible paper of Diaconis, Holmes, and Neal (2000). Although I had a vague idea of the contents of these papers, the role of the velocity ν became much clearer. And premonitory of the advances made by the more recent PDMP proposals. There is obviously a continuation with the equally pedagogical talk Christophe gave at MCqMC in Rennes two months [and half the globe] ago,  but the focus being somewhat different, it really felt like a new talk [my short term memory may also play some role in this feeling!, as I now remember the discussion of Hilderbrand (2002) for non-reversible processes]. An introduction to the topic I would recommend to anyone interested in this new branch of Monte Carlo simulation! To be followed by the most recently arXived hypocoercivity paper by Christophe and co-authors.

## IMS workshop [day 2]

Posted in pictures, Statistics, Travel with tags , , , , , , , , , , , , on August 29, 2018 by xi'an

Here are the slides of my talk today on using Wasserstein distances as an intrinsic distance measure in ABC, as developed in our papers with Espen Bernton, Pierre Jacob, and Mathieu Gerber:

This morning, Gael Martin discussed the surprising aspects of ABC prediction, expanding upon her talk at ISBA, with several threads very much worth weaving in the ABC tapestry, one being that summary statistics need be used to increase the efficiency of the prediction, as well as more adapted measures of distance. Her talk also led me ponder about the myriad of possibilities available or not in the most generic of ABC predictions (which is not the framework of Gael’s talk). If we imagine a highly intractable setting, it may be that the marginal generation of a predicted value at time t+1 requires the generation of the entire past from time 1 till time t. Possibly because of a massive dependence on latent variables. And the absence of particle filters. if this makes any sense. Therefore, based on a generated parameter value θ it may be that the entire series needs be simulated to reach the last value in the series. Even when unnecessary this may be an alternative to conditioning upon the actual series. In this later case, comparing both predictions may act as a natural measure of distance since one prediction is a function or statistic of the actual data while the other is a function of the simulated data. Another direction I mused about is the use of (handy) auxiliary models, each producing a prediction as a new statistic, which could then be merged and weighted (or even selected) by a random forest procedure. Again, if the auxiliary models are relatively well-behaved, timewise, this would be quite straightforward to implement.