Arnaud Guillin and Manon Michel from the Université Clermont-Auvergne are currently looking for PhD candidates interested in the mathematical analysis of neural networks via the tool of mean-field analysis. With full funding available. Candidates can contact Arnaud Guillin at uca.fr.

## Archive for neural network

## mathematical understanding of neural networks through mean-field analysis [PhD studenship]

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life, Wines with tags ANR, Auvergne, Clermont-Ferrand, mean field analysis, neural network, PhD fellowship on June 26, 2020 by xi'an## frontier of simulation-based inference

Posted in Books, Statistics, University life with tags ABC, Bayesian deep learning, classification, deep learning, GANs, kernel density estimator, National Academy of Science, neural network, neural networks and learning machines, PNAS, simulation-based inference, Statistics, summary statistics, Wasserstein distance on June 11, 2020 by xi'an

“This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, `The Science of Deep Learning,’ held March 13–14, 2019, at the National Academy of Sciences in Washington, DC.”

**A** paper by Kyle Cranmer, Johann Brehmer, and Gilles Louppe just appeared in PNAS on the frontier of simulation-based inference. Sounding more like a tribune than a research paper producing new input. Or at least like a review. Providing a quick introduction to simulators, inference, ABC. Stating the shortcomings of simulation-based inference as three-folded:

- costly, since required a large number of simulated samples
- loosing information through the use of insufficient summary statistics or poor non-parametric approximations of the sampling density.
- wasteful as requiring new computational efforts for new datasets, primarily for ABC as learning the likelihood function (as a function of both the parameter θ and the data x) is only done once.

And the difficulties increase with the dimension of the data. While the points made above are correct, I want to note that ideally ABC (and Bayesian inference as a whole) only depends on a single dimension observation, which is the likelihood value. Or more practically that it only depends on the distance from the observed data to the simulated data. (Possibly the Wasserstein distance between the cdfs.) And that, somewhat unrealistically, that ABC could store the reference table once for all. Point 3 can also be debated in that the effort of learning an approximation can only be amortized when exactly the same model is re-employed with new data, which is likely in industrial applications but less in scientific investigations, I would think. About point 2, the paper misses part of the ABC literature on selecting summary statistics, e.g., the culling afforded by random forests ABC, or the earlier use of the score function in Martin et al. (2019).

The paper then makes a case for using machine-, active-, and deep-learning advances to overcome those blocks. Recouping other recent publications and talks (like Dennis on One World ABC’minar!). Once again presenting machine-learning techniques such as normalizing flows as more efficient than traditional non-parametric estimators. Of which I remain unconvinced without deeper arguments [than the repeated mention of powerful machine-learning techniques] on the convergence rates of these estimators (rather than extolling the super-powers of neural nets).

“A classifier is trained using supervised learning to discriminate two sets of data, although in this case both sets come from the simulator and are generated for different parameter points θ⁰ and θ¹. The classifier output function can be converted into an approximation of the likelihood ratio between θ⁰ and θ¹ (…) learning the likelihood or posterior is an unsupervised learning problem, whereas estimating the likelihood ratio through a classifier is an example of supervised learning and often a simpler task.”

The above comment is highly connected to the approach set by Geyer in 1994 and expanded in Gutmann and Hyvärinen in 2012. Interestingly, at least from my narrow statistician viewpoint!, the discussion about using these different types of approximation to the likelihood and hence to the resulting Bayesian inference never engages into a quantification of the approximation or even broaches upon the potential for inconsistent inference unlocked by using fake likelihoods. While insisting on the information loss brought by using summary statistics.

“Can the outcome be trusted in the presence of imperfections such as limited sample size, insufficient network capacity, or inefficient optimization?”

Interestingly [the more because the paper is classified as statistics] the above shows that the statistical question is set instead in terms of numerical error(s). With proposals to address it ranging from (unrealistic) parametric bootstrap to some forms of GANs.

## sequential neural likelihood estimation as ABC substitute

Posted in Books, Kids, Statistics, University life with tags ABC, AISTATS 2019, AMIS, autoregressive flow, Bayesian inference, Gaussian copula, Gaussian processes, indirect inference, JMLR, Kullback-Leibler divergence, MCMC, neural density estimator, neural network, noise-contrastive estimation, normalizing flow, Scotland, synthetic likelihood, University of Edinburgh, variational Bayes methods on May 14, 2020 by xi'an**A** JMLR paper by Papamakarios, Sterratt, and Murray (Edinburgh), first presented at the AISTATS 2019 meeting, on a new form of likelihood-free inference, away from non-zero tolerance and from the distance-based versions of ABC, following earlier papers by Iain Murray and co-authors in the same spirit. Which I got pointed to during the ABC workshop in Vancouver. At the time I had no idea as to autoregressive flows meant. We were supposed to hold a reading group in Paris-Dauphine on this paper last week, unfortunately cancelled as a coronaviral precaution… Here are some notes I had prepared for the meeting that did not take place.

“A simulator model is a computer program, which takes a vector of parameters θ, makes internal calls to a random number generator, and outputs a data vector x.”

Just the usual generative model then.

“A conditional neural density estimator is a parametric model q(.|φ) (such as a neural network) controlled by a set of parameters φ, which takes a pair of datapoints (u,v) and outputs a conditional probability density q(u|v,φ).”

Less usual, in that the outcome is guaranteed to be a probability density.

“For its neural density estimator, SNPE uses a Mixture Density Network, which is a feed-forward neural network that takes x as input and outputs the parameters of a Gaussian mixture over θ.”

In which theoretical sense would it improve upon classical or Bayesian density estimators? Where are the error evaluation, the optimal rates, the sensitivity to the dimension of the data? of the parameter?

“Our new method, Sequential Neural Likelihood (SNL), avoids the bias introduced by the proposal, by opting to learn a model of the likelihood instead of the posterior.”

I do not get the argument in that the final outcome (of using the approximation within an MCMC scheme) remains biased since the likelihood is not the exact likelihood. Where is the error evaluation? Note that in the associated Algorithm 1, the learning set is enlarged on each round, as in AMIS, rather than set back to the empty set ∅ on each round.

“

…given enough simulations, a sufficiently flexible conditional neural density estimator will eventually approximate the likelihood in the support of the proposal, regardless of the shape of the proposal. In other words, as long as we do not exclude parts of the parameter space, the way we propose parameters does not bias learning the likelihood asymptotically. Unlike when learning the posterior, no adjustment is necessary to account for our proposing strategy.”

This is a rather vague statement, with the only support being that the Monte Carlo approximation to the Kullback-Leibler divergence does converge to its actual value, i.e. a direct application of the Law of Large Numbers! But an interesting point I informally made a (long) while ago that all that matters is the estimate of the density at x⁰. Or at the value of the statistic at x⁰. The masked auto-encoder density estimator is based on a sequence of bijections with a lower-triangular Jacobian matrix, meaning the conditional density estimate is available in closed form. Which makes it sounds like a form of neurotic variational Bayes solution.

The paper also links with ABC (too costly?), other parametric approximations to the posterior (like Gaussian copulas and variational likelihood-free inference), synthetic likelihood, Gaussian processes, noise contrastive estimation… With experiments involving some of the above. But the experiments involve rather smooth models with relatively few parameters.

“A general question is whether it is preferable to learn the posterior or the likelihood (…) Learning the likelihood can often be easier than learning the posterior, and it does not depend on the choice of proposal, which makes learning easier and more robust (…) On the other hand, methods such as SNPE return a parametric model of the posterior directly, whereas a further inference step (e.g. variational inference or MCMC) is needed on top of SNL to obtain a posterior estimate”

A fair point in the conclusion. Which also mentions the curse of dimensionality (both for parameters and observations) and the possibility to work directly with summaries.

Getting back to the earlier and connected Masked autoregressive flow for density estimation paper, by Papamakarios, Pavlakou and Murray:

“Viewing an autoregressive model as a normalizing flow opens the possibility of increasing its flexibility by stacking multiple models of the same type, by having each model provide the source of randomness for the next model in the stack. The resulting stack of models is a normalizing flow that is more flexible than the original model, and that remains tractable.”

Which makes it sound like a sort of a neural network in the density space. Optimised by Kullback-Leibler minimisation to get asymptotically close to the likelihood. But a form of Bayesian indirect inference in the end, namely an MLE on a pseudo-model, using the estimated model as a proxy in Bayesian inference…

## Nature tidbits [the Bayesian brain]

Posted in Statistics with tags ABC, deep learning, DeepMind, desert locust, Harvard University, Human Genetics, Isaac Asimov, memristors, neural network, NeurIPS, p-values, SNPs, UCL, University College London, Vancouver on March 8, 2020 by xi'anIn the latest Nature issue, a long cover of Asimov’s contributions to science and rationality. And a five page article on the dopamine reward in the brain seen as a probability distribution, seen as distributional reinforcement learning by researchers from DeepMind, UCL, and Harvard. Going as far as “testing” for this theory with a p-value of 0.008..! Which could be as well a signal of variability between neurons to dopamine rewards (with a p-value of 10⁻¹⁴, whatever that means). Another article about deep learning about protein (3D) structure prediction. And another one about learning neural networks via specially designed devices called memristors. And yet another one on West Africa population genetics based on four individuals from the Stone to Metal age (8000 and 3000 years ago), SNPs, PCA, and admixtures. With no ABC mentioned (I no longer have access to the journal, having missed renewal time for my subscription!). And the literal plague of a locust invasion in Eastern Africa. Making me wonder anew as to why proteins could not be recovered from the swarms of locust to partly compensate for the damages. (Locusts eat their bodyweight in food every day.) And the latest news from NeurIPS about diversity and inclusion. And ethics, as in checking for responsibility and societal consequences of research papers. Reviewing the maths of a submitted paper or the reproducibility of an experiment is already challenging at times, but evaluating the biases in massive proprietary datasets or the long-term societal impact of a classification algorithm may prove beyond the realistic.

## Julyan’s talk on priors in Bayesian neural networks [cancelled!]

Posted in pictures, Statistics, Travel, University life with tags All about that Bayes, École Normale de Cachan, Bayesian deep learning, Bayesian neural networks, Cachan, conference cancellation, coronavirus epidemics, ENS Paris-Saclay, Gaussian priors, machine learning, neural network, ReLU, seminar, Université Paris-Saclay on March 5, 2020 by xi'an**N**ext Friday, 13 March at 1:30p.m., Julyan Arbel, researcher at Inria Grenoble will give a All about that Bayes talk at CMLA, ENS Paris-Saclay (building D’Alembert, room Condorcet, Cachan, RER stop Bagneux) on

**Understanding Priors in Bayesian Neural Networks at the Unit Level**

We investigate deep Bayesian neural networks with Gaussian weight priors and a class of ReLU-like nonlinearities. Bayesian neural networks with Gaussian priors are well known to induce an L², “weight decay”, regularization. Our results characterize a more intricate regularization effect at the level of the unit activations. Our main result establishes that the induced prior distribution on the units before and after activation becomes increasingly heavy-tailed with the depth of the layer. We show that first layer units are Gaussian, second layer units are sub-exponential, and units in deeper layers are characterized by sub-Weibull distributions. Our results provide new theoretical insight on deep Bayesian neural networks, which we corroborate with simulation experiments.