## why is this algorithm simulating a Normal variate?

Posted in Books, Kids, R, Statistics with tags , , , , , , , on September 15, 2022 by xi'an

A backward question from X validated as to why the above is a valid Normal generator based on exponential generations. Which can be found in most textbooks (if not ours). And in The Bible, albeit as an exercise. The validation proceeds from the (standard) Exponential density dominating the (standard) Normal density and, according to Devroye, may have originated from von Neumann himself. But with a brilliant reverse engineering resolution by W. Huber on X validated. While a neat exercise, it requires on average 2.64 Uniform generations per Normal generation, against a 1/1 ratio for Box-Muller (1958) polar approach, or 1/0.86 for the Marsaglia-Bray (1964) composition-rejection method. The apex of the simulation jungle is however Marsaglia and Tsang (2000) ziggurat algorithm. At least on CPUs since, Note however that “The ziggurat algorithm gives a more efficient method for scalar processors (e.g. old CPUs), while the Box–Muller transform is superior for processors with vector units (e.g. GPUs or modern CPUs)” according to Wikipedia.

To draw a comparison between this Normal generator (that I will consider as von Neumann’s) and the Box-Müller polar generator,

#Box-Müller
bm=function(N){
a=sqrt(-2*log(runif(N/2)))
b=2*pi*runif(N/2)
return(c(a*sin(b),a*cos(b)))
}

#vonNeumann
vn=function(N){
u=-log(runif(2.64*N))
v=-2*log(runif(2.64*N))>(u-1)^2
w=(runif(2.64*N)<.5)-2
return((w*u)[v])
}


here are the relative computing times

> system.time(bm(1e8))
utilisateur     système      écoulé
7.015       0.649       7.674
> system.time(vn(1e8))
utilisateur     système      écoulé
42.483       5.713      48.222


## simulating from the joint cdf

Posted in Books, Kids, pictures, R, Statistics, University life with tags , , , , , , , , on July 13, 2022 by xi'an

An X validated question (what else?!) brought back (to me) the question of handling a bivariate cdf for simulation purposes. In the specific case of a copula when thus marginals were (well-)known…. And led me to an erroneous chain of thought, fortunately rescued by Robin Ryder! When the marginal distributions are set, the simulation setup is indeed equivalent to a joint Uniform simulation from a copula

$\mathbb P[U_1\leq u_1,U_2\leq u_2,\dots,U_d\leq u_d]=C(u_1,u_2,\dots,u_d)$

In specific cases, as for instance the obvious example of Gaussian copulas, there exist customised simulation algorithms. Looking for more generic solutions, I turn to the Bible, where Chapter XI[an], has two entire sections XI.3.2. and XI.3.3 on the topic (even though Luc Devroye does not use the term copula there despite them being introduced in 1959 by A, Sklar, in response to a query of M. Fréchet). In addition to a study of copulas, both sections contain many specific solutions (as for instance in the [unnumbered] Table on page 585) but I found no generic simulation method. My [non-selected] answer to the question was thus to propose standard solutions such as finding one conditional since the marginals are Uniform. Which depends on the tractability of the derivatives of C(·,·).

However, being dissatisfied with this bland answer, I thought further about the problem and came up with a fallacious scheme, namely to first simulate the value p of C(U,V) by drawing a Uniform, and second simulate (U,V) conditional on C(U,V)=p. Going as far as running an R code on a simple copula, as shown above. Fallacious reasoning since (as I knew already!!!), C(U,V) is not uniformly distributed! But has instead a case-dependent distribution… As a (connected) aside, I wonder if the generator attached with Archimedean copulas has any magical feature that help with the generation of the associated copula.

## A discrete Bernoulli factory

Posted in Books, Kids, Statistics with tags , , , , , , on October 18, 2021 by xi'an

A rather confusing (and now closed) question on X validated contained an interesting challenge of simulating an arbitrary discrete distribution using a single (standard) dice. It indeed made me think of the (more challenging) Bernoulli factory problem of simulating B(f(p)) using a B(p) simulator (with p unknown). I still do not see what the optimal solution is but the core challenge is to avoid simulating U(0,1) variate by exploiting the discrete nature of the target. Which may be an issue if the probabilities of the target are irrational and one is considering the cdf inversion approach. An alternative is to use an accept-reject approach, which also works for discrete distributions, by first deriving an instrumental distribution on the discrete support of the target from dice rolls, second finding the maximum of the ratio instrument to target, and third devising a discrete approach to selecting a generation with a probability taking a finite number of values. Which may prove quite costly. Finally, the least debatable approach is to turn the dice into a Uniform generator by using each draw as a digit in the base 5 representation of this Uniform variate, up to the precision desired for the resolution, and then apply the most efficient algorithm for the target distribution.

## R rexp()

Posted in Books, R, Statistics with tags , , , , , , , on May 18, 2021 by xi'an

Following a question on X validated about the reasons for coding rexp() following Ahrens & Dieter (1972) version, I re-read Luc Devroye’s explanations. Which boils down to an optimised implementation of von Neumann’s Exponential generator. The central result is that, for any μ>0, M a Geometric variate with failure probability exp(-μ) and Z a positive Poisson variate with parameter μ

$\mu(M+\min(U_1,\ldots,U_Z))$

is distributed as an Exp(1) random variate. Meaning that for every scale μ, the integer part and the fractional part of an Exponential variate are independent, the former a Geometric. A refinement of the above consists in choosing

exp(-μ) =½

as the generation of M then consists in counting the number of $$0’s$$ before the first $$1$$ in the binary expansion of $$U∼U(0,1)$$. Actually the loop used in Ahrens & Dieter (1972) seems to be much less efficient than counting these 0’s

> benchmark("a"={u=runif(1)
while(u<.5){
u=2*u
F=F+log(2)}},
"b"={v=as.integer(rev(intToBits(2^31*runif(1))))
sum(cumprod(!v))},
"c"={sum(cumprod(sample(c(0,1),32,rep=T)))},
"g"={rgeom(1,prob=.5)},replications=1e4)
test elapsed relative user.self
1    a  32.92  557.966    32.885
2    b  0.123    2.085     0.122
3    c  0.113    1.915     0.106
4    g  0.059    1.000     0.058


Obviously, trying to code the change directly in R resulted in much worse performances than the resident rexp(), coded in C.

## warped Cauchys

Posted in Books, Kids, R, Statistics with tags , , , on May 4, 2021 by xi'an

A somewhat surprising request on X validated about the inverse cdf representation of a wrapped Cauchy distribution. I had not come across this distribution, but its density being

$f_{WC}(\theta;\gamma)=\sum_{n=-\infty}^\infty \frac{\gamma}{\pi(\gamma^2+(\theta+2\pi n)^2)}\mathbb I_{ -\pi<\theta<\pi}$

means that it is the superposition of shifted Cauchys on the unit circle (with nice complex representations). As such, it is easily simulated by re-shifting a Cauchy back to (-π,π), i.e. using the inverse transform

$\theta = [\gamma\tan(\pi U-\pi/2)+\pi]\ \text{mod}\,(2\pi) - \pi$