**A** recent arXival by Heck, Wagenmaker and Morey attracted my attention: Three Qualitative Differences Between Bayes Factors and Normalized Maximum Likelihood, as it provides an analysis of the differences between Bayesian analysis and Rissanen’s Optimal Estimation of Parameters that I reviewed a while ago. As detailed in this review, I had difficulties with considering the normalised likelihood

as the relevant quantity. One reason being that the distribution does not make experimental sense: for instance, how can one simulate from this distribution? [I mean, when considering only the original distribution.] Working with the simple binomial B(n,θ) model, the authors show the quantity corresponding to the posterior probability may be constant for most of the data values, produces a different upper bound and hence a different penalty of model complexity, and may differ in conclusion for some observations. Which means that the apparent proximity to using a Jeffreys prior and Rissanen’s alternative does not go all the way. While it is a short note and only focussed on producing an illustration in the Binomial case, I find it interesting that researchers investigate the Bayesian nature (vs. artifice!) of this approach…