Archive for normalising constant

one bridge further

Posted in Books, R, Statistics, University life with tags , , , , , , , , , , , , on June 30, 2020 by xi'an

Jackie Wong, Jon Forster (Warwick) and Peter Smith have just published a paper in Statistics & Computing on bridge sampling bias and improvement by splitting.

“… known to be asymptotically unbiased, bridge sampling technique produces biased estimates in practical usage for small to moderate sample sizes (…) the estimator yields positive bias that worsens with increasing distance between the two distributions. The second type of bias arises when the approximation density is determined from the posterior samples using the method of moments, resulting in a systematic underestimation of the normalizing constant.”

Recall that bridge sampling is based on a double trick with two samples x and y from two (unnormalised) densities f and g that are interverted in a ratio

m \sum_{i=1}^n g(x_i)\omega(x_i) \Big/ n \sum_{i=1}^m f(y_i)\omega(y_i)

of unbiased estimators of the inverse normalising constants. Hence biased. The more the less similar these two densities are. Special cases for ω include importance sampling [unbiased] and reciprocal importance sampling. Since the optimal version of the bridge weight ω is the inverse of the mixture of f and g, it makes me wonder at the performance of using both samples top and bottom, since as an aggregated sample, they also come from the mixture, as in Owen & Zhou (2000) multiple importance sampler. However, a quick try with a positive Normal versus an Exponential with rate 2 does not show an improvement in using both samples top and bottom (even when using the perfectly normalised versions)


at least in terms of bias… Surprisingly (!) the bias almost vanishes for very different samples sizes either in favour of f or in favour of g. This may be a form of genuine defensive sampling, who knows?! At the very least, this ensures a finite variance for all weights. (The splitting approach introduced in the paper is a natural solution to create independence between the first sample and the second density. This reminded me of our two parallel chains in AMIS.)

Mallows model with intractable constant

Posted in Books, pictures, Statistics with tags , , , , , , , , on November 21, 2019 by xi'an

The paper Probabilistic Preference Learning with the Mallows Rank Model by Vitelli et al. was published last year in JMLR which may be why I missed it. It brings yet another approach to the perpetual issue of intractable  normalising constants. Here, the data is made of rankings of n objects by N experts, with an assumption of a latent ordering ρ acting as “mean” in the Mallows model. Along with a scale α, both to be estimated, and indeed involving an intractable normalising constant in the likelihood that only depends on the scale α because the distance is right-invariant. For instance the Hamming distance used in coding. There exists a simplification of the expression of the normalising constant due to the distance only taking a finite number of values, multiplied by the number of cases achieving a given value. Still this remains a formidable combinatoric problem. Running a Gibbs sampler is not an issue for the parameter ρ as the resulting Metropolis-Hastings-within-Gibbs step does not involve the missing constant. But it poses a challenge for the scale α, because the Mallows model cannot be exactly simulated for most distances. Making the use of pseudo-marginal and exchange algorithms presumably impossible. The authors use instead an importance sampling approximation to the normalising constant relying on a pseudo-likelihood version of Mallows model and a massive number (10⁶ to 10⁸) of simulations (in the humongous set of N-sampled permutations of 1,…,n). The interesting point in using this approximation is that the convergence result associated with pseudo-marginals no long applies and that the resulting MCMC algorithm converges to another limiting distribution. With the drawback that this limiting distribution is conditional to the importance sample. Various extensions are found in the paper, including a mixture of Mallows models. And an round of applications, including one on sushi preferences across Japan (fatty tuna coming almost always on top!). As the authors note, a very large number of items like n>10⁴ remains a challenge (or requires an alternative model).

revisiting the balance heuristic

Posted in Statistics with tags , , , , , , , on October 24, 2019 by xi'an

Last August, Felipe Medina-Aguayo (a former student at Warwick) and Richard Everitt (who has now joined Warwick) arXived a paper on multiple importance sampling (for normalising constants) that goes “exploring some improvements and variations of the balance heuristic via a novel extended-space representation of the estimator, leading to straightforward annealing schemes for variance reduction purposes”, with the interesting side remark that Rao-Blackwellisation may prove sub-optimal when there are many terms in the proposal family, in the sense that not every term in the mixture gets sampled. As already noticed by Victor Elvira and co-authors, getting rid of the components that are not used being an improvement without inducing a bias. The paper also notices that the loss due to using sample sizes rather than expected sample sizes is of second order, compared with the variance of the compared estimators. It further relates to a completion or auxiliary perspective that reminds me of the approaches we adopted in the population Monte Carlo papers and in the vanilla Rao-Blackwellisation paper. But it somewhat diverges from this literature when entering a simulated annealing perspective, in that the importance distributions it considers are freely chosen as powers of a generic target. It is quite surprising that, despite the normalising weights being unknown, a simulated annealing approach produces an unbiased estimator of the initial normalising constant. While another surprise therein is that the extended target associated to their balance heuristic does not admit the right density as marginal but preserves the same normalising constant… (This paper will be presented at BayesComp 2020.)

likelihood-free inference by ratio estimation

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , on September 9, 2019 by xi'an

“This approach for posterior estimation with generative models mirrors the approach of Gutmann and Hyvärinen (2012) for the estimation of unnormalised models. The main difference is that here we classify between two simulated data sets while Gutmann and Hyvärinen (2012) classified between the observed data and simulated reference data.”

A 2018 arXiv posting by Owen Thomas et al. (including my colleague at Warwick, Rito Dutta, CoI warning!) about estimating the likelihood (and the posterior) when it is intractable. Likelihood-free but not ABC, since the ratio likelihood to marginal is estimated in a non- or semi-parametric (and biased) way. Following Geyer’s 1994 fabulous estimate of an unknown normalising constant via logistic regression, the current paper which I read in preparation for my discussion in the ABC optimal design in Salzburg uses probabilistic classification and an exponential family representation of the ratio. Opposing data from the density and data from the marginal, assuming both can be readily produced. The logistic regression minimizing the asymptotic classification error is the logistic transform of the log-ratio. For a finite (double) sample, this minimization thus leads to an empirical version of the ratio. Or to a smooth version if the log-ratio is represented as a convex combination of summary statistics, turning the approximation into an exponential family,  which is a clever way to buckle the buckle towards ABC notions. And synthetic likelihood. Although with a difference in estimating the exponential family parameters β(θ) by minimizing the classification error, parameters that are indeed conditional on the parameter θ. Actually the paper introduces a further penalisation or regularisation term on those parameters β(θ), which could have been processed by Bayesian Lasso instead. This step is essentially dirving the selection of the summaries, except that it is for each value of the parameter θ, at the expense of a X-validation step. This is quite an original approach, as far as I can tell, but I wonder at the link with more standard density estimation methods, in particular in terms of the precision of the resulting estimate (and the speed of convergence with the sample size, if convergence there is).

bandits for doubly intractable posteriors

Posted in Statistics with tags , , , , , , , , on April 17, 2019 by xi'an

Last Friday, Guanyang Wang arXived a paper on the use of multi-armed bandits (hence the reference to the three bandits) to handle intractable normalising constants. The bandit compares or mixes Møller et al. (2006) auxiliary variable solution with Murray et al. (2006) exchange algorithm. Which are both special cases of pseudo-marginal MCMC algorithms. In both cases, the auxiliary variables produce an unbiased estimator of the ratio of the constants. Rather than the ratio of two unbiased estimators as in the more standard pseudo-marginal MCMC. The current paper tries to compare the two approaches based on the variance of the ratio estimate, but cannot derive a general ordering. The multi-armed bandit algorithm exploits both estimators of the acceptance ratio to pick the one that is almost the largest, almost because there is a correction for validating the step by detailed balance. The bandit acceptance probability is the maximum [over the methods] of the minimum [over the time directions] of the original acceptance ratio. While this appears to be valid, note that the resulting algorithm implies four times as many auxiliary variates as the original ones, which makes me wonder at the gain when compared with a parallel implementation of these methods, coupled at random times. (The fundamental difficulty of simulating from likelihoods with an unknown normalising constant remains, see p.4.)