**A**s I was preparing my (new) lectures for a PhD short course “at” Warwick (meaning on Teams!), I read a few surveys and other papers on all these acronyms. It included the massive Guttmann and Hyvärinen 2012 NCE JMLR paper, Goodfellow’s NIPS 2016 tutorial on GANs, and Kingma and Welling 2019 introduction to VAEs. Which I found a wee bit on the light side, maybe missing the fundamentals of the notion… As well as the pretty helpful 2019 survey on normalising flows by Papamakarios et al., although missing on the (statistical) density estimation side. And also a nice (2017) survey of GANs by Shakir Mohamed and Balaji Lakshminarayanan with a somewhat statistical spirit, even though convergence issues are not again not covered. But misspecification is there. And the many connections between ABC and GANs, if definitely missing on the uncertainty aspects. While Deep Learning by Goodfellow, Bengio and Courville adresses both the normalising constant (or partition function) and GANs, it was somehow not deep enough (!) to use for the course, offering only a few pages on NCE, VAEs and GANs. (And also missing on the statistical references addressing the issue, incl. [or excl.] Geyer, 1994.) Overall, the infinite variations offered on GANs leave me uncertain about their statistical relevance, as it is unclear how good the regularisation therein is for handling overfitting and consistent estimation. (And if I spot another decomposition of the Kullback-Leibler divergence, I may start crying…)

## Archive for normalising constant

## NCE, VAEs, GANs & even ABC…

Posted in Statistics with tags ABC, Bayesian GANs, CDT, deep learning, energy based model, generative adversarial networks, noise contrasting estimation, normalising constant, normalising flow, partition function, PhD course, Teams, University of Warwick, variational autoencoders on May 14, 2021 by xi'an## reXing the bridge

Posted in Books, pictures, Statistics with tags bridge sampling, Charlie Geyer, computational physics, Elsevier, logistic regression, multi-armed bandits, normalising constant, reverse logistic, Statistica Sinica, umbrella sampling on April 27, 2021 by xi'an

**A**s I was re-reading Xiao-Li Meng’s and Wing Hung Wong’s 1996 bridge sampling paper in Statistica Sinica, I realised they were making the link with Geyer’s (1994) mythical tech report, in the sense that the iterative construction of α functions “converges to the `reverse logistic regression’ described in Geyer (1994) for the two-density cases” (p.839). Although they also saw the later as an “iterative” application of Torrie and Valleau’s (1977) “umbrella sampling” estimator. And cited Bennett (1976) in the Journal of Computational Physics *[for which Elsevier still asks for $39.95!]* as the originator of the formula [check (6)]. And of the optimal solution (check (8)). Bennett (1976) also mentions that the method fares poorly when the targets do not overlap:

“When the two ensembles neither overlap nor satisfy the above smoothness condition, an accurate estimate of the free energy cannot be made without gathering additional MC data from one or more intermediateensembles”

in which case this sequence of intermediate targets could be constructed and, who knows?!, optimised. (This may be the chain solution discussed in the conclusion of the paper.) Another optimisation not considered in enough detail is the allocation of the computing time to the two densities, maybe using a bandit strategy to avoid estimating the variance of the importance weights first.

## flow contrastive estimation

Posted in Books, Statistics with tags Bayesian inference, flight, GAN, generative adversarial networks, Hyperion, noise-contrastive estimation, normalising constant, normalising flow, Université de Montpellier on March 15, 2021 by xi'an**O**n the flight back from Montpellier, last week, I read a 2019 paper by Gao et al. revisiting the MLE estimation of a parametric family parameter when the normalising constant Z=Z(θ) is unknown. Via noise-contrastive estimation à la Guttman & Hyvärinnen (or à la Charlie Geyer). Treating the normalising constant Z as an extra parameter (as in Kong et al.) and the classification probability as an objective function and calling it a likelihood, which it is not in my opinion as (i) the allocation to the groups is not random and (ii) the original density of the actual observations does not appear in the so-called likelihood.

*“When q appears on the right of KL-divergence* [against *p*],* it is forced to cover most of the modes of p, When q appears on the left of KL-divergence, it tends to chase the major modes of p while ignoring the minor modes.”*

The flow in the title indicates that the contrastive distribution *q* is estimated by a flow-based estimator, namely the transform of a basic noise distribution via easily invertible and differentiable transforms, for instance with lower triangular Jacobians. This flow is also estimated directly from the data but the authors complain this estimation is not good enough for noise contrastive estimation and suggest instead resorting to a GAN version where the classification log-probability is maximised in the model parameters and minimsed in the flow parameters. Except that I feel it misses the true likelihood part. In other words, why on Hyperion would estimating all θ, Z=Z(θ), and α at once improve the estimation of Z?

The other aspect that puzzles me is that (12) uses integrated classification probabilities (with the unknown Z as extra parameter), rather than conditioning on the data, Bayes-like. (The difference between (12) and GAN is that here the discriminator function is constrained.) Esp. when the first expectation is replaced with its empirical version.

## approximation of Bayes Factors via mixing

Posted in Books, Statistics, University life with tags Biometrika, bridge sampling, Charlie Geyer, defensive mixture, estimating a constant, Jim Berger, nested sampling, normalising constant, path sampling, San Antonio, Texas, Wang-Landau algorithm on December 21, 2020 by xi'anA [new version of a] paper by Chenguang Dai and Jun S. Liu got my attention when it appeared on arXiv yesterday. Due to its title which reminded me of a solution to the normalising constant approximation that we proposed in the 2010 nested sampling evaluation paper we wrote with Nicolas. Recovering bridge sampling—mentioned by Dai and Liu as an alternative to their approach rather than an early version—by a type of Charlie Geyer (1990-1994) trick. (The attached slides are taken from my MCMC graduate course, with a section on the approximation of Bayesian normalising constants I first wrote for a short course at Jim Berger’s 70th anniversary conference, in San Antonio.)

A difference with the current paper is that the authors “form a mixture distribution with an adjustable mixing parameter tuned through the Wang-Landau algorithm.” While we chose it by hand to achieve sampling from both components. The weight is updated by a simple (binary) Wang-Landau version, where the partition is determined by which component is simulated, ie by the mixture indicator auxiliary variable. Towards using both components on an even basis (à la Wang-Landau) and stabilising the resulting evaluation of the normalising constant. More generally, the strategy applies to a sequence of surrogate densities, which are chosen by variational approximations in the paper.

## marginal likelihood with large amounts of missing data

Posted in Books, pictures, Statistics with tags Bayesian Analysis, Chib's approximation, evidence, harmonic mean estimator, importance sampling, marginal likelihood, normalising constant, reversible jump, University of Warwick on October 20, 2020 by xi'an**I**n 2018, Panayiota Touloupou, research fellow at Warwick, and her co-authors published a paper in Bayesian analysis that somehow escaped my radar, despite standing in my first circle of topics of interest! They construct an importance sampling approach to the approximation of the marginal likelihood, the importance function being approximated from a preliminary MCMC run, and consider the special case when the sampling density (i.e., the likelihood) can be represented as the marginal of a joint density. While this demarginalisation perspective is rather usual, the central point they make is that it is more efficient to estimate the sampling density based on the auxiliary or latent variables than to consider the joint posterior distribution of parameter and latent in the importance sampler. This induces a considerable reduction in dimension and hence explains (in part) why the approach should prove more efficient. Even though the approximation itself is costly, at about 5 seconds per marginal likelihood. But a nice feature of the paper is to include the above graph that includes both computing time and variability for different methods (the blue range corresponding to the marginal importance solution, the red range to RJMCMC and the green range to Chib’s estimate). Note that bridge sampling does not appear on the picture but returns a variability that is similar to the proposed methodology.