**T**his post is a very preliminary announcement that Jukka Corander, Judith Rousseau and myself are planning an ABC in Svalbard workshop in 2021, on 12-13 April, following the “ABC in…” franchise that started in 2009 in Paris… It would be great to hear expressions of interest from potential participants towards scaling the booking accordingly. (While this is a sequel to the highly productive ABCruise of two years ago, between Helsinki and Stockholm, the meeting will take place in Longyearbyen, Svalbard, and participants will have to fly there from either Oslo or Tromsø, Norway, As boat cruises from Iceland or Greenland start later in the year. Note also that in mid-April, being 80⁰ North, Svalbard enjoys more than 18 hours of sunlight and that the average temperature last April was -3.9⁰C with a high of 4⁰C.) The scientific committee should be constituted very soon, but we already welcome proposals for sessions (and sponsoring, quite obviously!).

## Archive for Norway

## look, look, confidence! [book review]

Posted in Books, Statistics, University life with tags ABC, amazon associates, Bayesian foundations, BibTeX, book review, confidence distribution, confidence intervals, epistemic probability, fiducial distribution, frequentist coverage, Neyman-Scott problem, Nobel Prize, Norway, prior free posterior, Quenouille, survey, whales on April 23, 2018 by xi'an**A**s it happens, I recently bought [with Amazon Associate earnings] a (used) copy of Confidence, Likelihood, Probability (Statistical Inference with Confidence Distributions), by Tore Schweder and Nils Hjort, to try to understand this confusing notion of confidence distributions. (And hence did not get the book from CUP or anyone else towards purposely writing a review. Or a ½-review like the one below.)

“Fisher squared the circle and obtained a posterior without a prior.” (p.419)

Now that I have gone through a few chapters, I am no less confused about the point of this notion. Which seems to rely on the availability of confidence intervals. Exact or asymptotic ones. The authors plainly recognise (p.61) that a confidence distribution is neither a posterior distribution nor a fiducial distribution, hence cutting off any possible Bayesian usage of the approach. Which seems right in that there is no coherence behind the construct, meaning for instance there is no joint distribution corresponding to the resulting marginals. Or even a specific dominating measure in the parameter space. (Always go looking for the dominating measure!) As usual with frequentist procedures, there is always a feeling of arbitrariness in the resolution, as for instance in the Neyman-Scott problem (p.112) where the profile likelihood and the deviance do not work, but considering directly the distribution of the (inconsistent) MLE of the variance “saves the day”, which sounds a bit like starting from the solution. Another statistical freak, the Fieller-Creasy problem (p.116) remains a freak in this context as it does not seem to allow for a confidence distribution. I also notice an ambivalence in the discourse of the authors of this book, namely that while they claim confidence distributions are both outside a probabilisation of the parameter and inside, “producing distributions for parameters of interest given the data (…) with fewer philosophical and interpretational obstacles” (p.428).

“Bias is particularly difficult to discuss for Bayesian methods, and seems not to be a worry for most Bayesian statisticians.” (p.10)

The discussions as to whether or not confidence distributions form a synthesis of Bayesianism and frequentism always fall short from being convincing, the choice of (or the dependence on) a prior distribution appearing to the authors as a failure of the former approach. Or unnecessarily complicated when there are nuisance parameters. Apparently missing on the (high) degree of subjectivity involved in creating the confidence procedures. Chapter 1 contains a section on “Why not go Bayesian?” that starts from Chris Sims‘ Nobel Lecture on the appeal of Bayesian methods and goes [softly] rampaging through each item. One point (3) is recurrent in many criticisms of B and I always wonder whether or not it is tongue-in-cheek-y… Namely the fact that parameters of a model are rarely if ever stochastic. This is a misrepresentation of the use of prior and posterior distributions [which are in fact] as summaries of information cum uncertainty. About a true fixed parameter. Refusing as does the book to endow posteriors with an epistemic meaning (except for “Bayesian of the Lindley breed” (p.419) is thus most curious. (The debate is repeating in the final(e) chapter as “why the world need not be Bayesian after all”.)

“To obtain frequentist unbiasedness, the Bayesian will have to choose her prior with unbiasedness in mind. Is she then a Bayesian?” (p.430)

A general puzzling feature of the book is that notions are not always immediately defined, but rather discussed and illustrated first. As for instance for the central notion of fiducial probability (Section 1.7, then Chapter 6), maybe because Fisher himself did not have a general principle to advance. The construction of a confidence distribution most often keeps a measure of mystery (and arbitrariness), outside the rather stylised setting of exponential families and sufficient (conditionally so) statistics. (Incidentally, our 2012 ABC survey is [kindly] quoted in relation with approximate sufficiency (p.180), while it does not sound particularly related to this part of the book. Now, is there an ABC version of confidence distributions? Or an ABC derivation?) This is not to imply that the book is uninteresting!, as I found reading it quite entertaining, with many humorous and tongue-in-cheek remarks, like “From Fraser (1961a) and until Fraser (2011), and hopefully even further” (p.92), and great datasets. (Including one entitled *Pornoscope*, which is about *drosophilia* mating.) And also datasets with lesser greatness, like the 3000 mink whales that were killed for Example 8.5, where the authors if not the whales “are saved by a large and informative dataset”… (Whaling is a recurrent [national?] theme throughout the book, along with sport statistics usually involving Norway!)

Miscellanea: The interest of the authors in the topic is credited to bowhead whales, more precisely to Adrian Raftery’s geometric merging (or melding) of two priors and to the resulting Borel paradox (xiii). Proposal that I remember Adrian presenting in Luminy, presumably in 1994. Or maybe in Aussois the year after. The book also repeats Don Fraser’s notion that the likelihood is a sufficient statistic, a point that still bothers me. (On the side, I realised while reading Confidence, &tc., that ABC cannot comply with the likelihood principle.) To end up on a French nitpicking note (!), Quenouille is typ(o)ed Quenoille in the main text, the references and the index. (Blame the .bib file!)

## precisely!

Posted in pictures, Travel with tags Donald Trump, immigration, Norway, Stephen King, Trondheim, twitter, USA on January 12, 2018 by xi'an## a new paradigm for improper priors

Posted in Books, pictures, Statistics, Travel with tags Alfréd Rényi, Andrei Kolmogorov, axioms of probability, convergence of Gibbs samplers, improper priors, σ-algebra, marginalisation paradoxes, Norway, Trondheim on November 6, 2017 by xi'an**G**unnar Taraldsen and co-authors have arXived a short note on using improper priors from a new perspective. Generalising an earlier 2016 paper in JSPI on the same topic. Which both relate to a concept introduced by Rényi (who himself attributes the idea to Kolmogorov). Namely that random variables measures are to be associated with arbitrary measures [not necessarily σ-finite measures, the later defining σ-finite random variables], rather than those with total mass one. Which allows for an alternate notion of conditional probability in the case of σ-finite random variables, with the perk that this conditional probability distribution is itself of mass 1 (a.e.). Which we know happens when moving from prior to proper posterior.

I remain puzzled by the 2016 paper though as I do not follow the meaning of a *random variable* associated with an *infinite mass probability measure*. If the point is limited to construct posterior probability distributions associated with improper priors, there is little value in doing so. The argument in the 2016 paper is however that one can then define a conditional distribution in marginalisation paradoxes à la Stone, Dawid and Zidek (1973) where the marginal does not exist. Solving with this formalism the said marginalisation paradoxes as conditional distributions are only defined for σ-finite random variables. Which gives a fairly different conclusion from either Stone, Dawid and Zidek (1973) [with whom I agree, namely that there is no paradox because there is no “joint” distribution] or Jaynes (1973) [with whom I less agree!, in that the use of an invariant measure to make the discrepancy go away is not a particularly strong argument in favour of this measure]. The 2016 paper also draws an interesting connection with the study by Jim Hobert and George Casella (in Jim’s thesis) of [null recurrent or transient] Gibbs samplers with no joint [proper] distribution. Which in some situations can produce proper subchains, a phenomenon later exhibited by Alan Gelfand and Sujit Sahu (and Xiao-Li Meng as well if I correctly remember!). But I see no advantage in following this formalism, as it does not impact whether the chain is transient or null recurrent, or anything connected with its implementation. Plus a link to the approximation of improper priors by sequences of proper ones by Bioche and Druihlet I discussed a while ago.

## fiducial inference

Posted in Books, Mountains, pictures, Running, Statistics, Travel with tags cross validated, fiducial distribution, fiducial inference, fjord, σ-algebra, measure theory, Norway, probability theory, Ronald Fisher, Trondheim, Trondheimsfjord on October 30, 2017 by xi'an**I**n connection with my recent tale of the many ε’s, I received from Gunnar Taraldsen [from Tronheim, Norge] a paper [jointly written with Bo Lindqvist and just appeared on-line in JSPI] on conditional fiducial models.

“The role of the prior and the statistical model in Bayesian analysis is replaced by the use of the fiducial model x=R(θ,ε) in fiducial inference. The fiducial is obtained in this case without a prior distribution for the parameter.”

Reading this paper after addressing the X validated question made me understood better the fundamental wrongness of fiducial analysis! If I may herein object to Fisher himself… Indeed, when writing x=R(θ,ε), as the representation of the [observed] random variable x as a deterministic transform of a parameter θ and of an [unobserved] random factor ε, the two random variables x and ε are based on the same random preimage ω, i.e., x=x(ω) and ε=ε(ω). Observing x hence sets a massive constraint on the preimage ω and on the conditional distribution of ε=ε(ω). When the fiducial inference incorporates another level of randomness via an independent random variable ε’ and inverts x=R(θ,ε’) into θ=θ(x,ε’), assuming there is only one solution to the inversion, it modifies the nature of the underlying σ-algebra into something that is incompatible with the original model. Because of this sudden duplication of the random variates. While the inversion of this equation x=R(θ,ε’) gives an idea of the possible values of θ when ε varies according to its [prior] distribution, it does not account for the connection between x and ε. And does not turn the original parameter into a random variable with an implicit prior distribution.

As to conditional fiducial distributions, they are defined by inversion of x=R(θ,ε), under a certain constraint on θ, like C(θ)=0, which immediately raises a Pavlovian reaction in me, namely that since the curve C(θ)=0 has measure zero under the original fiducial distribution, how can this conditional solution be uniquely or at all defined. Or to avoid the Borel paradox mentioned in the paper. If I get the meaning of the authors in this section, the resulting fiducial distribution will actually depend on the choice of σ-algebra governing the projection.

“A further advantage of the fiducial approach in the case of a simple fiducial model is that independent samples areproduced directly from independent sampling from [the fiducial distribution]. Bayesian simulations most often come as dependent samples from a Markov chain.”

This side argument in “favour” of the fiducial approach is most curious as it brings into the picture computational aspects that do not have any reason to be there. (The core of the paper is concerned with the unicity of the fiducial distribution in some univariate settings. Not with computational issues.)

## Adam Ondra completes a first 9c

Posted in Kids, Mountains, pictures with tags 9c, Adam Ondra, extremes, Flatanger, Hanshelleren Cave, Norway, sport climbing on September 30, 2017 by xi'an**I**n my office hangs this poster of Adam Ondra climbing at sunset an impressive overhang with a little Czech town at the foot of the cliff, already in the shade. Impressive because of the view and of the climb which at 7c is a whole grade (and then some) beyond my reach. But now Ondra has managed to climb the first 9c in the world, which is universes beyond the impressive and beyond the fathomable, with passages only manageable feet first. Which actually makes a lot of sense, the way he explains it. The route is currently called *Project Hard *and is located* *in Hanshelleren Cave, Flatanger, Norway.

## fiducial on a string

Posted in Books, pictures, Statistics, Travel, University life with tags Bayesian Fiducial & Frequentist Conference, fiducial inference, Harvard University, Norway, NTU, Philosophy of Science, Teddy Seidenfeld on June 26, 2017 by xi'an**A** very short note in arXiv today by Gunnar Taraldsen and Bo Henry Lindqvist (NTU, Norway). With the above title. I find the note close to unreadable, I must say, as the notations are not all or well- defined. The problem starts from Teddy Seidenfeld [whom I met in Harvard around Dutch book arguments] arguing about the lack of unicity of fiducial distributions in a relatively simple setting. Actually the note is also inspired from Bayes, Fiducial and Frequentist, and comments from Teddy, a talk I apparently missed by taking a flight back home too early!

What I find surprising in this note is that the “fiducial on a string” is a conditional distribution on the parameter space restricted to a curve, derived from the original fiducial distribution by a conditioning argument. Except that since the conditioning is on a set of measure zero, this conditional is not only not-unique, but it is completely undefined and arbitrary, since changing it does not modify the properties of the joint distribution.