## stuck exchange

Posted in Books, Kids, Statistics with tags , , , , , , , on August 16, 2022 by xi'an

Made an attempt at explaining on X validated why simulating from the joint was equivalent to simulating from the marginal then from the conditional. Unfortunately failed as I could not fathom where the OP’s difficulty was. It seems it started at defining what drawing from a distribution meant… Then someone came by asking why I was writing the exponential in this unusual way (this was a barred E for expectation) and whether or not the “thin hollow rectangle” (a barred I for indicator) was standing for identity, that is

$\mathbb E\quad\text{and}\quad \mathbb I$

Reaching a point of incomprehension from which I could not recover…

## multiplying the bars

Posted in Kids, R with tags , , , , , , , on February 25, 2020 by xi'an

The latest Riddler makes the remark that the expression

|-1|-2|-3|

has no unique meaning (and hence value) since it could be

| -1x|-2|-3 | = 5   or   |-1| – 2x|-3| = -5

depending on the position of the multiplication sign and asks for all the possible values of

|-1|-2|…|-9|

which can be explored by a recursive R function for computing |-i|-(i+1)|…|-(i+2j)|

vol<-function(i,j){x=i
if(j){x=c(i-(i+1)*vol(i+2,j-1),abs(i*vol(i+1,j-1)+i+2*j))
if(j>1){for(k in 1:(j-2))
x=c(x,vol(i,k)-(i+2*k+1)*vol(i+2*k+2,j-k-1))}}
return(x)}


producing 40 different values for the ill-defined expression. However, this is incorrect as the product(s) hidden in the expression only involve a single term in vol(i,j)… I had another try with the decomposition of the expression vol(i,j) into a first part and a second part

prod<-function(a,b) a*b[,1]+b[,2]

val<-function(i,j){
x=matrix(c(i,0),ncol=2)
if(j){x=rbind(cbind(i,prod(-(i+1),val(i+2,j-1))),
cbind(abs(prod(-i,val(i+1,j-1))-i-2*j),0))
if(j-1){for(k in 2:(j-1)){
pon=val(i,k-1)
for(m in 1:dim(pon)[1])
x=rbind(x,cbind(pon[m,1],pon[m,2]+prod(-(i+2*k-1),val(i+2*k,j-k))))}}}
return(x)}


but it still fails to produce the right version.