Archive for NUTS

dynamic nested sampling for stars

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , , , , , , , , , on April 12, 2019 by xi'an

In the sequel of earlier nested sampling packages, like MultiNest, Joshua Speagle has written a new package called dynesty that manages dynamic nested sampling, primarily intended for astronomical applications. Which is the field where nested sampling is the most popular. One of the first remarks in the paper is that nested sampling can be more easily implemented by using a Uniform reparameterisation of the prior, that is, a reparameterisation that turns the prior into a Uniform over the unit hypercube. Which means in fine that the prior distribution can be generated from a fixed vector of uniforms and known transforms. Maybe not such an issue given that this is the prior after all.  The author considers this makes sampling under the likelihood constraint a much simpler problem but it all depends in the end on the concentration of the likelihood within the unit hypercube. And on the ability to reach the higher likelihood slices. I did not see any special trick when looking at the documentation, but reflected on the fundamental connection between nested sampling and this ability. As in the original proposal by John Skilling (2006), the slice volumes are “estimated” by simulated Beta order statistics, with no connection with the actual sequence of simulation or the problem at hand. We did point out our incomprehension for such a scheme in our Biometrika paper with Nicolas Chopin. As in earlier versions, the algorithm attempts at visualising the slices by different bounding techniques, before proceeding to explore the bounded regions by several exploration algorithms, including HMC.

“As with any sampling method, we strongly advocate that Nested Sampling should not be viewed as being strictly“better” or “worse” than MCMC, but rather as a tool that can be more or less useful in certain problems. There is no “One True Method to Rule Them All”, even though it can be tempting to look for one.”

When introducing the dynamic version, the author lists three drawbacks for the static (original) version. One is the reliance on this transform of a Uniform vector over an hypercube. Another one is that the overall runtime is highly sensitive to the choice the prior. (If simulating from the prior rather than an importance function, as suggested in our paper.) A third one is the issue that nested sampling is impervious to the final goal, evidence approximation versus posterior simulation, i.e., uses a constant rate of prior integration. The dynamic version simply modifies the number of point simulated in each slice. According to the (relative) increase in evidence provided by the current slice, estimated through iterations. This makes nested sampling a sort of inversted Wang-Landau since it sharpens the difference between slices. (The dynamic aspects for estimating the volumes of the slices and the stopping rule may hinder convergence in unclear ways, which is not discussed by the paper.) Among the many examples produced in the paper, a 200 dimension Normal target, which is an interesting object for posterior simulation in that most of the posterior mass rests on a ring away from the maximum of the likelihood. But does not seem to merit a mention in the discussion. Another example of heterogeneous regression favourably compares dynesty with MCMC in terms of ESS (but fails to include an HMC version).

[Breaking News: Although I wrote this post before the exciting first image of the black hole in M87 was made public and hence before I was aware of it, the associated AJL paper points out relying on dynesty for comparing several physical models of the phenomenon by nested sampling.]

 

revised empirical HMC

Posted in Statistics, University life with tags , , , , , , , , on March 12, 2019 by xi'an

Following the informed and helpful comments from Matt Graham and Bob Carpenter on our eHMC paper [arXival] last month, we produced a revised and re-arXived version of the paper based on new experiments ran by Changye Wu and Julien Stoehr. Here are some quick replies to these comments, reproduced for convenience. (Warning: this is a loooong post, much longer than usual.) Continue reading

faster HMC [poster at CIRM]

Posted in Statistics with tags , , , , , , , , on November 26, 2018 by xi'an

accelerating HMC by learning the leapfrog scale

Posted in Books, Statistics with tags , , , , , , , , on October 12, 2018 by xi'an

In this new arXiv submission that was part of Changye Wu’s thesis [defended last week],  we try to reduce the high sensitivity of the HMC algorithm to its hand-tuned parameters, namely the step size ε  of the discretisation scheme, the number of steps L of the integrator, and the covariance matrix of the auxiliary variables. By calibrating the number of steps of the Leapfrog integrator towards avoiding both slow mixing chains and wasteful computation costs. We do so by learning from the No-U-Turn Sampler (NUTS) of Hoffman and Gelman (2014) which already automatically tunes both the step size and the number of leapfrogs.

The core idea behind NUTS is to pick the step size via primal-dual averaging in a burn-in (warmup, Andrew would say) phase and to build at each iteration a proposal based on following a locally longest path on a level set of the Hamiltonian. This is achieved by a recursive algorithm that, at each call to the leapfrog integrator, requires to evaluate both the gradient of the target distribution and the Hamiltonianitself. Roughly speaking an iteration of NUTS costs twice as much as regular HMC with the same number of calls to the integrator. Our approach is to learn from NUTS the scale of the leapfrog length and use the resulting empirical distribution of the longest leapfrog path to randomly pick the value of  L at each iteration of an HMC scheme. This obviously preserves the validity of the HMC algorithm.

While a theoretical comparison of the convergence performances of NUTS and this eHMC proposal seem beyond our reach, we ran a series of experiments to evaluate these performances, using as a criterion an ESS value that is calibrated by the evaluation cost of the logarithm of target density function and of its gradient, as this is usually the most costly part of the algorithms. As well as a similarly calibrated expected square jumping distance. Above is one such illustration for a stochastic volatility model, the first axis representing the targeted acceptance probability in the Metropolis step. Some of the gains in either ESS or ESJD are by a factor of ten, which relates to our argument that NUTS somewhat wastes computation effort using a uniformly distributed proposal over the candidate set, instead of being close to its end-points, which automatically reduces the distance between the current position and the proposal.

accelerating MCMC

Posted in Statistics with tags , , , , , , , , , , , , on May 29, 2017 by xi'an

I have recently [well, not so recently!] been asked to write a review paper on ways of accelerating MCMC algorithms for the [review] journal WIREs Computational Statistics and would welcome all suggestions towards the goal of accelerating MCMC algorithms. Besides [and including more on]

  • coupling strategies using different kernels and switching between them;
  • tempering strategies using flatter or lower dimensional targets as intermediary steps, e.g., à la Neal;
  • sequential Monte Carlo with particle systems targeting again flatter or lower dimensional targets and adapting proposals to this effect;
  • Hamiltonian MCMC, again with connections to Radford (and more generally ways of avoiding rejections);
  • adaptive MCMC, obviously;
  • Rao-Blackwellisation, just as obviously (in the sense that increasing the precision in the resulting estimates means less simulations).

common derivation for Metropolis–Hastings and other MCMC algorithms

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on July 25, 2016 by xi'an

Khoa Tran and Robert Kohn from UNSW just arXived a paper on a comprehensive derivation of a large range of MCMC algorithms, beyond Metropolis-Hastings. The idea is to decompose the MCMC move into

  1. a random completion of the current value θ into V;
  2. a deterministic move T from (θ,V) to (ξ,W), where only ξ matters.

If this sounds like a new version of Peter Green’s completion at the core of his 1995 RJMCMC algorithm, it is bedowntown Sydney from under Sydney Harbour bridge, July 15, 2012cause it is indeed essentially the same notion. The resort to this completion allows for a standard form of the Metropolis-Hastings algorithm, which leads to the correct stationary distribution if T is self-inverse. This representation covers Metropolis-Hastings algorithms, Gibbs sampling, Metropolis-within-Gibbs and auxiliary variables methods, slice sampling, recursive proposals, directional sampling, Langevin and Hamiltonian Monte Carlo, NUTS sampling, pseudo-marginal Metropolis-Hastings algorithms, and pseudo-marginal Hamiltonian  Monte Carlo, as discussed by the authors. Given this representation of the Markov chain through a random transform, I wonder if Peter Glynn’s trick mentioned in the previous post on retrospective Monte Carlo applies in this generic setting (as it could considerably improve convergence…)

Non-reversible Markov Chains for Monte Carlo sampling

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on September 24, 2015 by xi'an

the pond in front of the Zeeman building, University of Warwick, July 01, 2014This “week in Warwick” was not chosen at random as I was aware there is a workshop on non-reversible MCMC going on. (Even though CRiSM sponsored so many workshops in September that almost any week would have worked for the above sentence!) It has always been kind of a mystery to me that non-reversibility could make a massive difference in practice, even though I am quite aware that it does. And I can grasp some of the theoretical arguments why it does. So it was quite rewarding to sit in this Warwick amphitheatre and learn about overdamped Langevin algorithms and other non-reversible diffusions, to see results where convergence times moved from n to √n, and to grasp some of the appeal of lifting albeit in finite state spaces. Plus, the cartoon presentation of Hamiltonian Monte Carlo by Michael Betancourt was a great moment, not only because of the satellite bursting into flames on the screen but also because it gave a very welcome intuition about why reversibility was inefficient and HMC appealing. So I am grateful to my two colleagues, Joris Bierkens and Gareth Roberts, for organising this exciting workshop, with a most profitable scheduling favouring long and few talks. My next visit to Warwick will also coincide with a workshop on intractable likelihood, next November. This time part of the new Alan Turing Institute programme.