Archive for Ockham’s razor

Bayes factors revisited

Posted in Books, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , on March 22, 2021 by xi'an

 

“Bayes factor analyses are highly sensitive to and crucially depend on prior assumptions about model parameters (…) Note that the dependency of Bayes factors on the prior goes beyond the dependency of the posterior on the prior. Importantly, for most interesting problems and models, Bayes factors cannot be computed analytically.”

Daniel J. Schad, Bruno Nicenboim, Paul-Christian Bürkner, Michael Betancourt, Shravan Vasishth have just arXived a massive document on the Bayes factor, worrying about the computation of this common tool, but also at the variability of decisions based on Bayes factors, e.g., stressing correctly that

“…we should not confuse inferences with decisions. Bayes factors provide inference on hypotheses. However, to obtain discrete decisions (…) from continuous inferences in a principled way requires utility functions. Common decision heuristics (e.g., using Bayes factor larger than 10 as a discovery threshold) do not provide a principled way to perform decisions, but are merely heuristic conventions.”

The text is long and at times meandering (at least in the sections I read), while trying a wee bit too hard to bring up the advantages of using Bayes factors versus frequentist or likelihood solutions. (The likelihood ratio being presented as a “frequentist” solution, which I think is an incorrect characterisation.) For instance, the starting point of preferring a model with a higher marginal likelihood is presented as an evidence (oops!) rather than argumented. Since this quantity depends on both the prior and the likelihood, it being high or low is impacted by both. One could then argue that using its numerical value as an absolute criterion amounts to selecting the prior a posteriori as much as checking the fit to the data! The paper also resorts to the Occam’s razor argument, which I wish we could omit, as it is a vague criterion, wide open to misappropriation. It is also qualitative, rather than quantitative, hence does not help in calibrating the Bayes factor.

Concerning the actual computation of the Bayes factor, an issue that has always been a concern and a research topic for me, the authors consider only two “very common methods”, the Savage–Dickey density ratio method and bridge sampling. We discussed the shortcomings of the Savage–Dickey density ratio method with Jean-Michel Marin about ten years ago. And while bridge sampling is an efficient approach when comparing models of the same dimension, I have reservations about this efficiency in other settings. Alternative approaches like importance nested sampling, noise contrasting estimation or SMC samplers are often performing quite efficiently as normalising constant approximations. (Not to mention our version of harmonic mean estimator with HPD support.)

Simulation-based inference is based on the notion that simulated data can be produced from the predictive distributions. Reminding me of ABC model choice to some extent. But I am uncertain this approach can be used to calibrate the decision procedure to select the most appropriate model. We thought about using this approach in our testing by mixture paper and it is favouring the more complex of the two models. This seems also to occur for the example behind Figure 5 in the paper.

Two other points: first, the paper does not consider the important issue with improper priors, which are not rigorously compatible with Bayes factors, as I discussed often in the past. And second, Bayes factors are not truly Bayesian decision procedures, since they remove the prior weights on the models, thus the mention of utility functions therein seems inappropriate unless a genuine utility function can be produced.

Naturally amazed at non-identifiability

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on May 27, 2020 by xi'an

A Nature paper by Stilianos Louca and Matthew W. Pennell,  Extant time trees are consistent with a myriad of diversification histories, comes to the extraordinary conclusion that birth-&-death evolutionary models cannot distinguish between several scenarios given the available data! Namely, stem ages and daughter lineage ages cannot identify the speciation rate function λ(.), the extinction rate function μ(.)  and the sampling fraction ρ inherently defining the deterministic ODE leading to the number of species predicted at any point τ in time, N(τ). The Nature paper does not seem to make a point beyond the obvious and I am rather perplexed at why it got published [and even highlighted]. A while ago, under the leadership of Steve, PNAS decided to include statistician reviewers for papers relying on statistical arguments. It could time for Nature to move there as well.

“We thus conclude that two birth-death models are congruent if and only if they have the same rp and the same λp at some time point in the present or past.” [S.1.1, p.4]

Or, stated otherwise, that a tree structured dataset made of branch lengths are not enough to identify two functions that parameterise the model. The likelihood looks like

\frac{\rho^{n-1}\Psi(\tau_1,\tau_0)}{1-E(\tau)}\prod_{i=1}^n \lambda(\tau_i)\Psi(s_{i,1},\tau_i)\Psi(s_{i,2},\tau_i)$

where E(.) is the probability to survive to the present and ψ(s,t) the probability to survive and be sampled between times s and t. Sort of. Both functions depending on functions λ(.) and  μ(.). (When the stem age is unknown, the likelihood changes a wee bit, but with no changes in the qualitative conclusions. Another way to write this likelihood is in term of the speciation rate λp

e^{-\Lambda_p(\tau_0)}\prod_{i=1}^n\lambda_p(\tau_I)e^{-\Lambda_p(\tau_i)}

where Λp is the integrated rate, but which shares the same characteristic of being unable to identify the functions λ(.) and μ(.). While this sounds quite obvious the paper (or rather the supplementary material) goes into fairly extensive mode, including “abstract” algebra to define congruence.

 

“…we explain why model selection methods based on parsimony or “Occam’s razor”, such as the Akaike Information Criterion and the Bayesian Information Criterion that penalize excessive parameters, generally cannot resolve the identifiability issue…” [S.2, p15]

As illustrated by the above quote, the supplementary material also includes a section about statistical model selections techniques failing to capture the issue, section that seems superfluous or even absurd once the fact that the likelihood is constant across a congruence class has been stated.

back to Ockham’s razor

Posted in Statistics with tags , , , , , , , , , on July 31, 2019 by xi'an

“All in all, the Bayesian argument for selecting the MAP model as the single ‘best’ model is suggestive but not compelling.”

Last month, Jonty Rougier and Carey Priebe arXived a paper on Ockham’s factor, with a generalisation of a prior distribution acting as a regulariser, R(θ). Calling on the late David MacKay to argue that the evidence involves the correct penalising factor although they acknowledge that his central argument is not absolutely convincing, being based on a first-order Laplace approximation to the posterior distribution and hence “dubious”. The current approach stems from the candidate’s formula that is already at the core of Sid Chib’s method. The log evidence then decomposes as the sum of the maximum log-likelihood minus the log of the posterior-to-prior ratio at the MAP estimator. Called the flexibility.

“Defining model complexity as flexibility unifies the Bayesian and Frequentist justifications for selecting a single model by maximizing the evidence.”

While they bring forward rational arguments to consider this as a measure model complexity, it remains at an informal level in that other functions of this ratio could be used as well. This is especially hard to accept by non-Bayesians in that it (seriously) depends on the choice of the prior distribution, as all transforms of the evidence would. I am thus skeptical about the reception of the argument by frequentists…

over-confident about mis-specified models?

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , on April 30, 2019 by xi'an

Ziheng Yang and Tianqui Zhu published a paper in PNAS last year that criticises Bayesian posterior probabilities used in the comparison of models under misspecification as “overconfident”. The paper is written from a phylogeneticist point of view, rather than from a statistician’s perspective, as shown by the Editor in charge of the paper [although I thought that, after Steve Fienberg‘s intervention!, a statistician had to be involved in a submission relying on statistics!] a paper , but the analysis is rather problematic, at least seen through my own lenses… With no statistical novelty, apart from looking at the distribution of posterior probabilities in toy examples. The starting argument is that Bayesian model comparison is often reporting posterior probabilities in favour of a particular model that are close or even equal to 1.

“The Bayesian method is widely used to estimate species phylogenies using molecular sequence data. While it has long been noted to produce spuriously high posterior probabilities for trees or clades, the precise reasons for this over confidence are unknown. Here we characterize the behavior of Bayesian model selection when the compared models are misspecified and demonstrate that when the models are nearly equally wrong, the method exhibits unpleasant polarized behaviors,supporting one model with high confidence while rejecting others. This provides an explanation for the empirical observation of spuriously high posterior probabilities in molecular phylogenetics.”

The paper focus on the behaviour of posterior probabilities to strongly support a model against others when the sample size is large enough, “even when” all models are wrong, the argument being apparently that the correct output should be one of equal probability between models, or maybe a uniform distribution of these model probabilities over the probability simplex. Why should it be so?! The construction of the posterior probabilities is based on a meta-model that assumes the generating model to be part of a list of mutually exclusive models. It does not account for cases where “all models are wrong” or cases where “all models are right”. The reported probability is furthermore epistemic, in that it is relative to the measure defined by the prior modelling, not to a promise of a frequentist stabilisation in a ill-defined asymptotia. By which I mean that a 99.3% probability of model M¹ being “true”does not have a universal and objective meaning. (Moderation note: the high polarisation of posterior probabilities was instrumental in our investigation of model choice with ABC tools and in proposing instead error rates in ABC random forests.)

The notion that two models are equally wrong because they are both exactly at the same Kullback-Leibler distance from the generating process (when optimised over the parameter) is such a formal [or cartoonesque] notion that it does not make much sense. There is always one model that is slightly closer and eventually takes over. It is also bizarre that the argument does not account for the complexity of each model and the resulting (Occam’s razor) penalty. Even two models with a single parameter are not necessarily of intrinsic dimension one, as shown by DIC. And thus it is not a surprise if the posterior probability mostly favours one versus the other. In any case, an healthily sceptic approach to Bayesian model choice means looking at the behaviour of the procedure (Bayes factor, posterior probability, posterior predictive, mixture weight, &tc.) under various assumptions (model M¹, M², &tc.) to calibrate the numerical value, rather than taking it at face value. By which I do not mean a frequentist evaluation of this procedure. Actually, it is rather surprising that the authors of the PNAS paper do not jump on the case when the posterior probability of model M¹ say is uniformly distributed, since this would be a perfect setting when the posterior probability is a p-value. (This is also what happens to the bootstrapped version, see the last paragraph of the paper on p.1859, the year Darwin published his Origin of Species.)

Bayesian methods in cosmology

Posted in Statistics with tags , , , , , , , , , , , , on January 18, 2017 by xi'an

A rather massive document was arXived a few days ago by Roberto Trotta on Bayesian methods for cosmology, in conjunction with an earlier winter school, the 44th Saas Fee Advanced Course on Astronomy and Astrophysics, “Cosmology with wide-field surveys”. While I never had the opportunity to give a winter school in Saas Fee, I will give next month a course on ABC to statistics graduates in another Swiss dream location, Les Diablerets.  And next Fall a course on ABC again but to astronomers and cosmologists, in Autrans, near Grenoble.

The course document is an 80 pages introduction to probability and statistics, in particular Bayesian inference and Bayesian model choice. Including exercises and references. As such, it is rather standard in that the material could be found as well in textbooks. Statistics textbooks.

When introducing the Bayesian perspective, Roberto Trotta advances several arguments in favour of this approach. The first one is that it is generally easier to follow a Bayesian approach when compared with seeking a non-Bayesian one, while recovering long-term properties. (Although there are inconsistent Bayesian settings.) The second one is that a Bayesian modelling allows to handle naturally nuisance parameters, because there are essentially no nuisance parameters. (Even though preventing small world modelling may lead to difficulties as in the Robbins-Wasserman paradox.) The following two reasons are the incorporation of prior information and the appeal on conditioning on the actual data.

trottaThe document also includes this above and nice illustration of the concentration of measure as the dimension of the parameter increases. (Although one should not over-interpret it. The concentration does not occur in the same way for a normal distribution for instance.) It further spends quite some space on the Bayes factor, its scaling as a natural Occam’s razor,  and the comparison with p-values, before (unsurprisingly) introducing nested sampling. And the Savage-Dickey ratio. The conclusion of this model choice section proposes some open problems, with a rather unorthodox—in the Bayesian sense—line on the justification of priors and the notion of a “correct” prior (yeech!), plus an musing about adopting a loss function, with which I quite agree.

%d bloggers like this: