Archive for odds ratio

from statistical evidence to evidence of causality

Posted in Books, Statistics with tags , , , , , , , , , on December 24, 2013 by xi'an

I took the opportunity of having to wait at a local administration a long while today (!) to read an arXived paper by Dawid, Musio and Fienberg on the−both philosophical and practical−difficulty to establish the probabilities of the causes of effects. The first interesting thing about the paper is that it relates to the Médiator drug scandal that took place in France in the past year and still is under trial: thanks to the investigations of a local doctor, Irène Frachon, the drug was exposed as an aggravating factor for heart disease. Or maybe the cause. The case-control study of Frachon summarises into a 2×2 table with a corrected odds ratio of 17.1. From there, the authors expose the difficulties of drawing inference about causes of effects, i.e. causality, an aspect of inference that has always puzzled me. (And the paper led me to search for the distinction between odds ratio and risk ratio.)

“And the conceptual and implementational difficulties that we discuss below, that beset even the simplest case of inference about causes of effects, will be hugely magnified when we wish to take additional account of such policy considerations.”

A third interesting notion in the paper is the inclusion of counterfactuals. My introduction to counterfactuals dates back to a run in the back-country roads around Ithaca, New York, when George told me about a discussion paper from Phil he was editing for JASA on that notion with his philosopher neighbour Steven Schwartz as a discussant. (It was a great run, presumably in the late Spring. And the best introduction I could dream of!) Now, the paper starts from the counterfactual perspective to conclude that inference is close to impossible in this setting. Within my limited understanding, I would see that as a drawback of using counterfactuals, rather than of drawing inference about causes. If the corresponding statistical model is nonindentifiable, because one of the two responses is always missing, the model seems inappropriate. I am also surprised at the notion of “sufficiency” used in the paper, since it sounds like the background information cancels the need to account for the treatment (e.g., aspirin) decision.  The fourth point is the derivation of bounds on the probabilities of causation, despite everything! Quite an interesting read thus!