Archive for One World ABC Seminar

stratified ABC [One World ABC webinar]

Posted in Books, Statistics, University life with tags , , , , , , , , on May 15, 2020 by xi'an

The third episode of the One World ABC seminar (Season 1!) was kindly delivered by Umberto Picchini on Stratified sampling and bootstrapping for ABC which I already if briefly discussed after BayesComp 2020. Which sounds like a million years ago… His introduction on the importance of estimating the likelihood using a kernel, while 600% justified wrt his talk, made the One World ABC seminar sounds almost like groundhog day!  The central argument is in the computational gain brought by simulating a single θ dependent [expensive] dataset followed by [cheaper] bootstrap replicates. Which turns de fact into bootstrapping the summary statistics.

If I understand correctly, the post-stratification approach of Art Owen (2013?, I cannot find the reference) corrects a misrepresentation of mine. Indeed, defining a partition with unknown probability weights seemed to me to annihilate the appeal of stratification, because the Bernoulli variance of the estimated probabilities brought back the same variability as the mother estimator. But with bootstrap, this requires only two simulations, one for the weights and one for the target. And further allows for a larger ABC tolerance in fine. Free lunch?!

The speaker in two weeks (21 May or Ascension Thursday!) is my friend and co-author Gael Martin from Monash University, who will speak on Focused Bayesian prediction, at quite a late time down under..!

rare ABC [webinar impressions]

Posted in Books, Statistics, Travel, University life with tags , , , , , , , on April 28, 2020 by xi'an

A second occurrence of the One World ABC seminar by Ivis Kerama, and Richard Everitt (Warwick U), on their on-going pape with and Tom Thorne, Rare Event ABC-SMC², which is not about rare event simulation but truly about ABC improvement. Building upon a previous paper by Prangle et al. (2018). And also connected with Dennis’ talk a fortnight ago in that it exploits an autoencoder representation of the simulated outcome being H(u,θ). It also reminded me of an earlier talk by Nicolas Chopin.

This approach avoids using summary statistics (but relies on a particular distance) and implements a biased sampling of the u’s to produce outcomes more suited to the observation(s). Almost sounds like a fiducial ABC! Their stopping rule for decreasing the tolerance is to spot an increase in the variance of the likelihood estimates. As the method requires many data generations for a single θ, it only applies in certain settings. The ABC approximation is indeed used as an estimation of likelihood ratio (which makes sense for SMC² but is biased because of ABC). I got slightly confused during Richard’s talk by his using the term of unbiased estimator of the likelihood before I realised he was talking of the ABC posterior. Thanks to both speakers, looking forward the talk by Umberto Picchini in a fortnight (on a joint paper with Richard).

One World webinars

Posted in Statistics with tags , , , , on April 21, 2020 by xi'an

Just a notice that our ABC World seminar has joined the “franchise” of the One World seminars

and that, on Thursday, 23 April, at 12:30 (CEST) IIvis Kerama and Richard Everitt will talk on  Rare event ABC-SMC², while, also on Thursday, at 16:00 (CEST) Michela Ottobre will talk Fast non mean-field network: uniform in time averaging in the One World Probability Seminar.