**A**mong the many papers published in this special issue of TAS on statistical significance or lack thereof, there is a paper I had already read before (besides ours!), namely the paper by Jonty Rougier (U of Bristol, hence the picture) on connecting p-values, likelihood ratio, and Bayes factors. Jonty starts from the notion that the p-value is induced by a transform, summary, statistic of the sample, t(x), the larger this t(x), the less likely the null hypothesis, with density f⁰(x), to create an embedding model by exponential tilting, namely the exponential family with dominating measure f⁰, and natural statistic, t(x), and a positive parameter θ. In this embedding model, a Bayes factor can be derived from any prior on θ and the p-value satisfies an interesting double inequality, namely that it is less than the likelihood ratio, itself lower than any (other) Bayes factor. One novel aspect from my perspective is that I had thought up to now that this inequality only holds for one-dimensional problems, but there is no constraint here on the dimension of the data x. A remark I presumably made to Jonty on the first version of the paper is that the p-value itself remains invariant under a bijective increasing transform of the summary t(.). This means that there exists an infinity of such embedding families and that the bound remains true over all such families, although the value of this minimum is beyond my reach (could it be the p-value itself?!). This point is also clear in the justification of the analysis thanks to the Pitman-Koopman lemma. Another remark is that the perspective can be inverted in a more realistic setting when a genuine alternative model M¹ is considered and a genuine likelihood ratio is available. In that case the Bayes factor remains smaller than the likelihood ratio, itself larger than the p-value induced by the likelihood ratio statistic. Or its log. The induced embedded exponential tilting is then a geometric mixture of the null and of the locally optimal member of the alternative. I wonder if there is a parameterisation of this likelihood ratio into a p-value that would turn it into a uniform variate (under the null). Presumably not. While the approach remains firmly entrenched within the realm of p-values and Bayes factors, this exploration of a natural embedding of the original p-value is definitely worth mentioning in a class on the topic! (One typo though, namely that the Bayes factor is mentioned to be lower than one, which is incorrect.)

## Archive for p-values

## abandon ship [value]!!!

Posted in Books, Statistics, University life with tags Andrew Gelman, hypothesis testing, Nature, p-values, special issue, Statistical decision theory, statistical significance, The American Statistician, threshold, uncertainty quantification on March 22, 2019 by xi'an**T**he Abandon Statistical Significance paper we wrote with “. A 400 page special issue with 43 papers available on-line and open-source! Food for thought likely to be discussed further here (and elsewhere). The paper and the ideas within have been discussed quite a lot on Andrew’s blog and I will not repeat them here, simply quoting from the conclusion of the paper

In this article, we have proposed to abandon statistical significance and offered recommendations for how this can be implemented in the scientific publication process as well as in statistical decision making more broadly. We reiterate that we have no desire to “ban” p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors.

Which also introduced in a comment by Valentin Amrhein, Sander Greenland, and Blake McShane published in Nature today (and supported by 800+ signatures). Again discussed on Andrew’s blog.

## 5 ways to fix statistics?!

Posted in Books, Kids, pictures, Statistics, University life with tags cartoon, falsehood flies and truth comes limping after it, Nature, p-values, poor statistics, predictability, reproducible research, uncertainty on December 4, 2017 by xi'an**I**n the last issue of Nature (Nov 30), the comment section contains a series of opinions on the reproducibility crisis, by five [groups of] statisticians. Including Blakeley McShane and Andrew Gelman with whom [and others] I wrote a response to the seventy author manifesto. The collection of comments is introduced with the curious sentence

“The problem is not our maths, but ourselves.”

Which I find problematic as (a) the problem is *never* with the maths, but possibly with the stats!, and (b) the problem stands in inadequate assumptions on the validity of “the” statistical model and on ignoring the resulting epistemic uncertainty. Jeff Leek‘s suggestion to improve the interface with users seems to come short on that level, while David Colquhoun‘s Bayesian balance between p-values and false-positive only address well-specified models. Michèle Nuitjen strikes closer to my perspective by arguing that rigorous rules are unlikely to help, due to the plethora of possible post-data modellings. And Steven Goodman’s putting the blame on the lack of statistical training of scientists (who “only want enough knowledge to run the statistical software that allows them to get their paper out quickly”) is wishful thinking: every scientific study [i.e., the overwhelming majority] involving data cannot involve a statistical expert and every paper involving data analysis cannot be reviewed by a statistical expert. I thus cannot but repeat the conclusion of Blakeley and Andrew:

“A crucial step is to move beyond the alchemy of binary statements about ‘an effect’ or ‘no effect’ with only a P value dividing them. Instead, researchers must accept uncertainty and embrace variation under different circumstances.”

## 10 great ideas about chance [book preview]

Posted in Books, pictures, Statistics, University life with tags Abraham Wald, Alan Turing, Allais' paradox, Alonzo Church, Andrei Kolmogorov, BFF4, book review, Borel-Kolmogorov paradox, Brian Skyrms, Bruno de Finetti, Cardano's formula, CHANCE, David Hume, Dutch book argument, equiprobability, exchangeability, Frank Ramsey, gambling, Gerolamo Cardano, Henri Poincaré, heuristics, Jakob Bernoulli, John Maynard Keynes, John von Neumann, Karl Popper, Martin-Löf, measure theory, p-values, Persi Diaconis, Pierre Simon Laplace, PUP, Radon-Nikodym Theorem, randomness, Richard von Mises, sufficiency, Thomas Bayes, Venn diagram on November 13, 2017 by xi'an*[As I happened to be a reviewer of this book by Persi Diaconis and Brian Skyrms, I had the opportunity (and privilege!) to go through its earlier version. Here are the [edited] comments I sent back to PUP and the authors about this earlier version. All in all, a terrific book!!!]*

**T**he historical introduction (“measurement”) of this book is most interesting, especially its analogy of chance with length. I would have appreciated a connection earlier than Cardano, like some of the Greek philosophers even though I gladly discovered there that Cardano was not only responsible for the closed form solutions to the third degree equation. I would also have liked to see more comments on the vexing issue of *equiprobability*: we all spend (if not waste) hours in the classroom explaining to (or arguing with) students why their solution is not correct. And they sometimes never get it! [And we sometimes get it wrong as well..!] Why is such a simple concept so hard to explicit? In short, but this is nothing but a personal choice, I would have made the chapter more conceptual and less chronologically historical.

“Coherence is again a question of consistent evaluations of a betting arrangement that can be implemented in alternative ways.” (p.46)

The second chapter, about Frank Ramsey, is interesting, if only because it puts this “man of genius” back under the spotlight when he has all but been forgotten. (At least in my circles.) And for joining probability and utility together. And for postulating that probability can be derived from expectations rather than the opposite. Even though betting or gambling has a (negative) stigma in many cultures. At least gambling for money, since most of our actions involve some degree of betting. But not in a rational or reasoned manner. (Of course, this is not a mathematical but rather a psychological objection.) Further, the justification through betting is somewhat tautological in that it assumes probabilities are true probabilities from the start. For instance, the Dutch book example on p.39 produces a gain of .2 only if the probabilities are correct.

> gain=rep(0,1e4) > for (t in 1:1e4){ + p=rexp(3);p=p/sum(p) + gain[t]=(p[1]*(1-.6)+p[2]*(1-.2)+p[3]*(.9-1))/sum(p)} > hist(gain)

As I made it clear at the BFF4 conference last Spring, I now realise I have never really adhered to the Dutch book argument. This may be why I find the chapter somewhat unbalanced with not enough written on utilities and too much on Dutch books.

“The force of accumulating evidence made it less and less plausible to hold that subjective probability is, in general, approximate psychology.” (p.55)

A chapter on “psychology” may come as a surprise, but I feel *a posteriori* that it is appropriate. Most of it is about the Allais paradox. Plus entries on Ellesberg’s distinction between risk and uncertainty, with only the former being quantifiable by “objective” probabilities. And on Tversky’s and Kahneman’s distinction between heuristics, and the framing effect, i.e., how the way propositions are expressed impacts the choice of decision makers. However, it is leaving me unclear about the conclusion that the fact that people behave irrationally should not prevent a reliance on utility theory. Unclear because when taking actions involving other actors their potentially irrational choices should also be taken into account. (This is mostly nitpicking.)

“This is Bernoulli’s swindle. Try to make it precise and it falls apart. The conditional probabilities go in different directions, the desired intervals are of different quantities, and the desired probabilities are different probabilities.” (p.66)

The next chapter (“frequency”) is about Bernoulli’s Law of Large numbers and the stabilisation of frequencies, with von Mises making it the basis of his approach to probability. And Birkhoff’s extension which is capital for the development of stochastic processes. And later for MCMC. I like the notions of “disreputable twin” (p.63) and “Bernoulli’s swindle” about the idea that “chance is frequency”. The authors call the identification of probabilities as limits of frequencies Bernoulli‘s swindle, because it cannot handle zero probability events. With a nice link with the testing fallacy of equating rejection of the null with acceptance of the alternative. And an interesting description as to how Venn perceived the fallacy but could not overcome it: “If Venn’s theory appears to be full of holes, it is to his credit that he saw them himself.” The description of von Mises’ Kollectiven [and the welcome intervention of Abraham Wald] clarifies my previous and partial understanding of the notion, although I am unsure it is that clear for all potential readers. I also appreciate the connection with the very notion of *randomness* which has not yet found I fear a satisfactory definition. This chapter asks more (interesting) questions than it brings answers (to those or others). But enough, this is a brilliant chapter!

“…a random variable, the notion that Kac found mysterious in early expositions of probability theory.” (p.87)

Chapter 5 (“mathematics”) is very important [from my perspective] in that it justifies the necessity to associate measure theory with probability if one wishes to evolve further than urns and dices. To entitle Kolmogorov to posit his axioms of probability. And to define properly conditional probabilities as random variables (as my third students fail to realise). I enjoyed very much reading this chapter, but it may prove difficult to read for readers with no or little background in measure (although some advanced mathematical details have vanished from the published version). Still, this chapter constitutes a strong argument for preserving measure theory courses in graduate programs. As an aside, I find it amazing that mathematicians (even Kac!) had not at first realised the connection between measure theory and probability (p.84), but maybe not so amazing given the difficulty many still have with the notion of conditional probability. (Now, I would have liked to see some description of Borel’s paradox when it is mentioned (p.89).

“Nothing hangs on a flat prior (…) Nothing hangs on a unique quantification of ignorance.” (p.115)

The following chapter (“inverse inference”) is about Thomas Bayes and his posthumous theorem, with an introduction setting the theorem at the centre of the Hume-Price-Bayes triangle. (It is nice that the authors include a picture of the original version of the essay, as the initial title is much more explicit than the published version!) A short coverage, in tune with the fact that Bayes only contributed a twenty-plus paper to the field. And to be logically followed by a second part [formerly another chapter] on Pierre-Simon Laplace, both parts focussing on the selection of prior distributions on the probability of a Binomial (coin tossing) distribution. Emerging into a discussion of the position of statistics within or even outside mathematics. (And the assertion that Fisher was the Einstein of Statistics on p.120 may be disputed by many readers!)

“So it is perfectly legitimate to use Bayes’ mathematics even if we believe that chance does not exist.” (p.124)

The seventh chapter is about Bruno de Finetti with his astounding representation of exchangeable sequences as being mixtures of iid sequences. Defining an implicit prior on the side. While the description sticks to binary events, it gets quickly more advanced with the notion of partial and Markov exchangeability. With the most interesting connection between those exchangeabilities and sufficiency. (I would however disagree with the statement that “Bayes was the father of parametric Bayesian analysis” [p.133] as this is extrapolating too much from the Essay.) My next remark may be non-sensical, but I would have welcomed an entry at the end of the chapter on cases where the exchangeability representation fails, for instance those cases when there is no sufficiency structure to exploit in the model. A bonus to the chapter is a description of Birkhoff’s ergodic theorem “as a generalisation of de Finetti” (p..134-136), plus half a dozen pages of appendices on more technical aspects of de Finetti’s theorem.

“We want random sequences to pass all tests of randomness, with tests being computationally implemented”. (p.151)

The eighth chapter (“algorithmic randomness”) comes (again!) as a surprise as it centres on the character of Per Martin-Löf who is little known in statistics circles. (The chapter starts with a picture of him with the iconic Oberwolfach sculpture in the background.) Martin-Löf’s work concentrates on the notion of randomness, in a mathematical rather than probabilistic sense, and on the algorithmic consequences. I like very much the section on random generators. Including a mention of our old friend RANDU, the 16 planes random generator! This chapter connects with Chapter 4 since von Mises also attempted to define a random sequence. To the point it feels slightly repetitive (for instance Jean Ville is mentioned in rather similar terms in both chapters). Martin-Löf’s central notion is computability, which forces us to visit Turing’s machine. And its role in the undecidability of some logical statements. And Church’s recursive functions. (With a link not exploited here to the notion of probabilistic programming, where one language is actually named Church, after Alonzo Church.) Back to Martin-Löf, (I do not see how his test for randomness can be implemented on a real machine as the whole test requires going through the entire sequence: since this notion connects with von Mises’ Kollektivs, I am missing the point!) And then Kolmororov is brought back with his own notion of complexity (which is also Chaitin’s and Solomonov’s). Overall this is a pretty hard chapter both because of the notions it introduces and because I do not feel it is completely conclusive about the notion(s) of randomness. A side remark about casino hustlers and their “exploitation” of weak random generators: I believe Jeff Rosenthal has a similar if maybe simpler story in his book about Canadian lotteries.

“Does quantum mechanics need a different notion of probability? We think not.” (p.180)

The penultimate chapter is about Boltzmann and the notion of “physical chance”. Or statistical physics. A story that involves Zermelo and Poincaré, And Gibbs, Maxwell and the Ehrenfests. The discussion focus on the definition of probability in a thermodynamic setting, opposing time frequencies to space frequencies. Which requires ergodicity and hence Birkhoff [no surprise, this is about ergodicity!] as well as von Neumann. This reaches a point where conjectures in the theory are yet open. What I always (if presumably naïvely) find fascinating in this topic is the fact that ergodicity operates without requiring randomness. Dynamical systems can enjoy ergodic theorem, while being completely deterministic.) This chapter also discusses quantum mechanics, which main tenet requires probability. Which needs to be defined, from a frequency or a subjective perspective. And the Bernoulli shift that brings us back to random generators. The authors briefly mention the Einstein-Podolsky-Rosen paradox, which sounds more metaphysical than mathematical in my opinion, although they get to great details to explain Bell’s conclusion that quantum theory leads to a mathematical impossibility (but they lost me along the way). Except that we “are left with quantum probabilities” (p.183). And the chapter leaves me still uncertain as to why statistical mechanics carries the label *statistical*. As it does not seem to involve inference at all.

“If you don’t like calling these ignorance priors on the ground that they may be sharply peaked, call them nondogmatic priors or skeptical priors, because these priors are quite in the spirit of ancient skepticism.” (p.199)

And then the last chapter (“induction”) brings us back to Hume and the 18th Century, where somehow “everything” [including statistics] started! Except that Hume’s strong scepticism (or skepticism) makes induction seemingly impossible. (A perspective with which I agree to some extent, if not to Keynes’ extreme version, when considering for instance financial time series as stationary. And a reason why I do not see the criticisms contained in the Black Swan as pertinent because they savage normality while accepting stationarity.) The chapter rediscusses Bayes’ and Laplace’s contributions to inference as well, challenging Hume’s conclusion of the impossibility to finer. Even though the representation of ignorance is not unique (p.199). And the authors call again for de Finetti’s representation theorem as bypassing the issue of whether or not there is such a thing as chance. And escaping inductive scepticism. (The section about Goodman’s grue hypothesis is somewhat distracting, maybe because I have always found it quite artificial and based on a linguistic pun rather than a logical contradiction.) The part about (Richard) Jeffrey is quite new to me but ends up quite abruptly! Similarly about Popper and his exclusion of induction. From this chapter, I appreciated very much the section on skeptical priors and its analysis from a meta-probabilist perspective.

There is no conclusion to the book, but to end up with a chapter on induction seems quite appropriate. (But there is an appendix as a probability tutorial, mentioning Monte Carlo resolutions. Plus notes on all chapters. And a commented bibliography.) Definitely recommended!

*[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Books Review section in CHANCE. As appropriate for a book about Chance!]*

## abandon all o(p) ye who enter here

Posted in Books, Statistics, University life with tags Andrew Gelman, Bayesian hypothesis testing, blogging, Dante Alighieri, Nature Methods, p-values, uniformly most powerful tests on September 28, 2017 by xi'an**T**oday appeared on arXiv a joint paper by Blakeley McShane, David Gal, Andrew Gelman, Jennifer Tackett, and myself, towards the abandonment of significance tests, which is a response to the 72 author paper in Nature Methods that recently made the news (and comments on the ‘Og). Some of these comments have been incorporated in the paper, along with others more on the psychology testing side. From the irrelevance of point null hypotheses to the numerous incentives for multiple comparisons, to the lack of sufficiency of the p-value itself, to the limited applicability of the uniformly most powerful prior principle…

“…each [proposal] is a purely statistical measure that fails to take a more holistic view of the evidence that includes the consideration of the traditionally neglected factors, that is, prior and related evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain.”

One may wonder about this list of grievances and its impact on statistical practice. The paper however suggests two alternatives, one being to investigate the potential impact of (neglected) factors rather than relying on thresholds. Another one, maybe less realistic, unless it is the very same, is to report the entirety of the data associated with the experiment. This makes the life of journal editors and grant evaluators harder, possibly much harder, but it indeed suggests an holistic and continuous approach to data analysis, rather than the mascarade of binary outputs. (Not surprisingly, posting this item of news on Andrew’s blog a few hours ago generated a large amount of discussion.)

## p-values and decision-making [reposted]

Posted in Books, Statistics, University life with tags 0.005, 0.05, books, decision theory, Dennis Lindley, hypothesis testing, Nicholas T. Longford, p-values, Robert Matthews, Significance, statistical significance on August 30, 2017 by xi'an*I**n a letter to Significance about a review of Robert Matthews’s book, Chancing it, Nicholas Longford recalls a few basic facts about p-values and decision-making earlier made by Dennis Lindley in Making Decisions. Here are some excerpts, worth repeating in the light of the 0.005 proposal:*

“A statement of significance based on a p-value is a verdict that is oblivious to consequences. In my view, this disqualifies hypothesis testing, and p-values with it, from making rational decisions. Of course, the p-value could be supplemented by considerations of these consequences, although this is rarely done in a transparent manner. However, the two-step procedure of calculating the p-value and then incorporating the consequences is unlikely to match in its integrity the single-stage procedure in which we compare the expected losses associated with the two contemplated options.”

“At present, [Lindley’s] decision-theoretical approach is difficult to implement in practice. This is not because of any computational complexity or some problematic assumptions, but because of our collective reluctance to inquire about the consequences – about our clients’ priorities, remits and value judgements. Instead, we promote a culture of “objective” analysis, epitomised by the 5% threshold in significance testing. It corresponds to a particular balance of consequences, which may or may not mirror our clients’ perspective.”

“The p-value and statistical significance are at best half-baked products in the process of making decisions, and a distraction at worst, because the ultimate conclusion of a statistical analysis should be a proposal for what to do next in our clients’ or our own research, business, production or some other agenda. Let’s reflect and admit how frequently we abuse hypothesis testing by adopting (sometimes by stealth) the null hypothesis when we fail to reject it, and therefore do so without any evidence to support it. How frequently we report, or are party to reporting, the results of hypothesis tests selectively. The problem is not with our failing to adhere to the convoluted strictures of a popular method, but with the method itself. In the 1950s, it was a great statistical invention, and its popularisation later on a great scientific success. Alas, decades later, it is rather out of date, like the steam engine. It is poorly suited to the demands of modern science, business, and society in general, in which the budget and pocketbook are important factors.”

## no publication without confirmation

Posted in Books, Statistics, University life with tags clinical trials, Nature, p-values, replication crisis on March 15, 2017 by xi'an

“Our proposal is a new type of paper for animal studies (…) that incorporates an independent, statistically rigorous confirmation of a researcher’s central hypothesis.” (p.409)

**A** comment tribune in Nature of Feb 23, 2017, suggests running clinical trials in three stages towards meeting higher standards in statistical validation. The idea is to impose a preclinical trial run by an independent team following an initial research showing some potential for some new treatment. The three stages are thus (i) to generate hypotheses; (ii) to test hypotheses; (iii) to test broader application of hypotheses (p.410). While I am skeptical of the chances of this proposal reaching adoption (for various reasons, like, what would the incentive of the second team be [of the B team be?!], especially if the hypothesis is dis-proved, how would both teams share the authorship and presumably patenting rights of the final study?, and how could independence be certain were the B team contracted by the A team?), the statistical arguments put forward in the tribune are rather weak (in my opinion). Repeating experiments with a larger sample size and an hypothesis set a priori rather than cherry-picked is obviously positive, but moving from a p-value boundary of 0.05 to one of 0.01 and to a power of 80% is more a cosmetic than a foundational change. As Andrew and I pointed out in our PNAS discussion of Johnson two years ago.

“the earlier experiments would not need to be held to the same rigid standards.” (p.410)

The article contains a vignette on “the maths of predictive value” that makes intuitive sense but only superficially. First, “the positive predictive value is the probability that a positive result is truly positive” (p.411) A statement that implies a distribution of probability on the space of hypotheses, although I see no Bayesian hint throughout the paper. Second, this (ersatz of a) probability is computed by a ratio of the number of positive results under the hypothesis over the total number of positive results. Which does not make much sense outside a Bayesian framework and even then cannot be assessed experimentally or by simulation without defining a distribution of the output under both hypotheses. Simplistic pictures are the above are not necessarily meaningful. And Nature should certainly invest into a statistical editor!