Archive for paradoxes

Bayesian intelligence in Warwick

Posted in pictures, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , , on February 18, 2019 by xi'an

This is an announcement for an exciting CRiSM Day in Warwick on 20 March 2019: with speakers

10:00-11:00 Xiao-Li Meng (Harvard): “Artificial Bayesian Monte Carlo Integration: A Practical Resolution to the Bayesian (Normalizing Constant) Paradox”

11:00-12:00 Julien Stoehr (Dauphine): “Gibbs sampling and ABC”

14:00-15:00 Arthur Ulysse Jacot-Guillarmod (École Polytechnique Fedérale de Lausanne): “Neural Tangent Kernel: Convergence and Generalization of Deep Neural Networks”

15:00-16:00 Antonietta Mira (Università della Svizzera italiana e Università degli studi dell’Insubria): “Bayesian identifications of the data intrinsic dimensions”

[whose abstracts are on the workshop webpage] and free attendance. The title for the workshop mentions Bayesian Intelligence: this obviously includes human intelligence and not just AI!

revisiting marginalisation paradoxes [Bayesian reads #1]

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on February 8, 2019 by xi'an

As a reading suggestion for my (last) OxWaSP Bayesian course at Oxford, I included the classic 1973 Marginalisation paradoxes by Phil Dawid, Mervyn Stone [whom I met when visiting UCL in 1992 since he was sharing an office with my friend Costas Goutis], and Jim Zidek. Paper that also appears in my (recent) slides as an exercise. And has been discussed many times on this  ‘Og.

Reading the paper in the train to Oxford was quite pleasant, with a few discoveries like an interesting pike at Fraser’s structural (crypto-fiducial?!) distributions that “do not need Bayesian improper priors to fall into the same paradoxes”. And a most fascinating if surprising inclusion of the Box-Müller random generator in an argument, something of a precursor to perfect sampling (?). And a clear declaration that (right-Haar) invariant priors are at the source of the resolution of the paradox. With a much less clear notion of “un-Bayesian priors” as those leading to a paradox. Especially when the authors exhibit a red herring where the paradox cannot disappear, no matter what the prior is. Rich discussion (with none of the current 400 word length constraint), including the suggestion of neutral points, namely those that do identify a posterior, whatever that means. Funny conclusion, as well:

“In Stone and Dawid’s Biometrika paper, B1 promised never to use improper priors again. That resolution was short-lived and let us hope that these two blinkered Bayesians will find a way out of their present confusion and make another comeback.” D.J. Bartholomew (LSE)

and another

“An eminent Oxford statistician with decidedly mathematical inclinations once remarked to me that he was in favour of Bayesian theory because it made statisticians learn about Haar measure.” A.D. McLaren (Glasgow)

and yet another

“The fundamentals of statistical inference lie beneath a sea of mathematics and scientific opinion that is polluted with red herrings, not all spawned by Bayesians of course.” G.N. Wilkinson (Rothamsted Station)

Lindley’s discussion is more serious if not unkind. Dennis Lindley essentially follows the lead of the authors to conclude that “improper priors must go”. To the point of retracting what was written in his book! Although concluding about the consequences for standard statistics, since they allow for admissible procedures that are associated with improper priors. If the later must go, the former must go as well!!! (A bit of sophistry involved in this argument…) Efron’s point is more constructive in this regard since he recalls the dangers of using proper priors with huge variance. And the little hope one can hold about having a prior that is uninformative in every dimension. (A point much more blatantly expressed by Dickey mocking “magic unique prior distributions”.) And Dempster points out even more clearly that the fundamental difficulty with these paradoxes is that the prior marginal does not exist. Don Fraser may be the most brutal discussant of all, stating that the paradoxes are not new and that “the conclusions are erroneous or unfounded”. Also complaining about Lindley’s review of his book [suggesting prior integration could save the day] in Biometrika, where he was not allowed a rejoinder. It reflects on the then intense opposition between Bayesians and fiducialist Fisherians. (Funny enough, given the place of these marginalisation paradoxes in his book, I was mistakenly convinced that Jaynes was one of the discussants of this historical paper. He is mentioned in the reply by the authors.)

no country for old biases

Posted in Books, Kids, Statistics with tags , , , , , on March 20, 2018 by xi'an

Following a X validated question, I read a 1994 paper by Phil Dawid on the selection paradoxes in Bayesian statistics, which first sounded like another version of the stopping rule paradox. And upon reading, less so. As described above, the issue stands with drawing inference on the index and value, (i⁰,μ⁰), of the largest mean of a sample of Normal rvs. What I find surprising in Phil’s presentation is that the Bayesian analysis does not sound that Bayesian. If given the whole sample, a Bayesian approach should produce a posterior distribution on (i⁰,μ⁰), rather than follow estimation steps, from estimating i⁰ to estimating the associated mean. And if needed, estimators should come from the definition of a particular loss function. When, instead, given the largest point in the sample, and only that point, its distribution changes, so I am fairly bemused by the statement that no adjustment is needed.

The prior modelling is also rather surprising in that the priors on the means should be joint rather than a product of independent Normals, since these means are compared and hence comparable. For instance a hierarchical prior seems more appropriate, with location and scale to be estimated from the whole data. Creating a connection between the means… A relevant objection to the use of independent improper priors is that the maximum mean μ⁰ then does not have a well-defined measure. However, I do not think a criticism of some priors versus other is a relevant attack on this “paradox”.

a paradox about likelihood ratios?

Posted in Books, pictures, Statistics, University life with tags , , , , , , , on January 15, 2018 by xi'an

Aware of my fascination for paradoxes (and heterodox publications), Ewan Cameron sent me the link to a recent arXival by Louis Lyons (Oxford) on different asymptotic distributions of the likelihood ratio. Which is full of approximations. The overall point of the note is hard to fathom… Unless it simply plans to illustrate Betteridge’s law of headlines, as suggested by Ewan.

For instance, the limiting distribution of the log-likelihood of an exponential sample at the true value of the parameter τ is not asymptotically Gaussian but almost surely infinite. While the log of the (Wilks) likelihood ratio at the true value of τ is truly (if asymptotically) a Χ² variable with one degree of freedom. That it is not a Gaussian is deemed a “paradox” by the author, explained by a cancellation of first order terms… Same thing again for the common Gaussian mean problem!

about paradoxes

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , on December 5, 2017 by xi'an

An email I received earlier today about statistical paradoxes:

I am a PhD student in biostatistics, and an avid reader of your work. I recently came across this blog post, where you review a text on statistical paradoxes, and I was struck by this section:

“For instance, the author considers the MLE being biased to be a paradox (p.117), while omitting the much more substantial “paradox” of the non-existence of unbiased estimators of most parameters—which simply means unbiasedness is irrelevant. Or the other even more puzzling “paradox” that the secondary MLE derived from the likelihood associated with the distribution of a primary MLE may differ from the primary. (My favourite!)”

I found this section provocative, but I am unclear on the nature of these “paradoxes”. I reviewed my stat inference notes and came across the classic example that there is no unbiased estimator for 1/p w.r.t. a binomial distribution, but I believe you are getting at a much more general result. If it’s not too much trouble, I would sincerely appreciate it if you could point me in the direction of a reference or provide a bit more detail for these two “paradoxes”.

The text is Chang’s Paradoxes in Scientific Inference, which I indeed reviewed negatively. To answer about the bias “paradox”, it is indeed a neglected fact that, while the average of any transform of a sample obviously is an unbiased estimator of its mean (!), the converse does not hold, namely, an arbitrary transform of the model parameter θ is not necessarily enjoying an unbiased estimator. In Lehmann and Casella, Chapter 2, Section 4, this issue is (just slightly) discussed. But essentially, transforms that lead to unbiased estimators are mostly the polynomial transforms of the mean parameters… (This also somewhat connects to a recent X validated question as to why MLEs are not always unbiased. Although the simplest explanation is that the transform of the MLE is the MLE of the transform!) In exponential families, I would deem the range of transforms with unbiased estimators closely related to the collection of functions that allow for inverse Laplace transforms, although I cannot quote a specific result on this hunch.

The other “paradox” is that, if h(X) is the MLE of the model parameter θ for the observable X, the distribution of h(X) has a density different from the density of X and, hence, its maximisation in the parameter θ may differ. An example (my favourite!) is the MLE of ||a||² based on x N(a,I) which is ||x||², a poor estimate, and which (strongly) differs from the MLE of ||a||² based on ||x||², which is close to (1-p/||x||²)²||x||² and (nearly) admissible [as discussed in the Bayesian Choice].

Monty Hall closes the door

Posted in Books, Kids, pictures with tags , , , , , , , , , on October 1, 2017 by xi'an

Among much more dramatic news today, I learned about Monty Hall passing away, who achieved long lasting fame among probabilists for his TV game show leading to the Monty Hall problem, a simple conditional probability derivation often leading to arguments because of the loose wording of the conditioning event. By virtue of Stigler’s Law, the Monty Hall game was actually invented earlier, apparently by the French probabilist Joseph Bertrand, in his Calcul des probabilités. The New York Times article linked with the image points out the role of outfits with the game participants, towards being selected by the host, Monty Hall. And that one show had a live elephant behind a door, instead of a goat, elephant which freaked out..!

Principles of scientific methods [not a book review]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on November 11, 2014 by xi'an

Mark Chang, author of Paradoxes in Scientific Inference and vice-president of AMAG Pharmaceuticals, has written another book entitled Principles of Scientific Methods. As was clear from my CHANCE review of Paradoxes in Scientific Inference, I did not find much appeal in this earlier book, even after the author wrote a reply (first posted on this blog and later printed in CHANCE). Hence a rather strong reluctance [of mine] to engage into another highly critical review when I received this new opus by the same author. [And the brainwave cover just put me off even further, although I do not want to start a review by criticising the cover, it did not go that well with the previous attempts!]

After going through Principles of Scientific Methods, I became ever more bemused about the reason(s) for writing or publishing such a book, to the point I decided not to write a CHANCE review on it… (But, having spent some Métro rides on it, I still want to discuss why. Read at your own peril!)

Continue reading