Archive for PDMP

scalable Metropolis-Hastings

Posted in Books, Statistics, Travel with tags , , , , , , , , , on February 12, 2019 by xi'an

Among the flury of arXived papers of last week (414!), including a fair chunk of papers submitted to ICML 2019, I spotted one entry by Cornish et al. on scalable Metropolis-Hastings, which Arnaud Doucet had mentioned to me yesterday when in Oxford. The paper builds on the delayed acceptance paper we wrote with Marco Banterlé, Clara Grazian and Anthony Lee, itself relying on a factorisation decomposition of the likelihood, combined with control variate accelerating techniques. The factorisation of both the target and the proposal allows for a (less efficient) Metropolis-Hastings acceptance ratio that is the product

\prod_{i=1}^m \alpha_i(\theta,\theta')

of individual Metropolis-Hastings acceptance ratios, but which allows for quicker rejection if one of the probabilities in the product is small, because the corresponding Bernoulli draw is zero with high probability. One advance made in Michel et al. (2017) [which I doubly missed] is that subsampling is achievable by thinning (as in PDMPs, where these authors have been quite active) through an algorithm of Shantikumar (1985) [described in Devroye’s bible]. Provided each Metropolis-Hastings probability can be lower bounded:

\alpha_i(\theta,\theta') \ge \exp\{-\psi_i \phi(\theta,\theta')\}

by a term where the transition φ does not depend on the index i in the product. The computing cost of the thinning process thus depends on the efficiency of the subsampling, namely whether or not the (Poisson) number of terms is much smaller than m, number of terms in the product. A neat trick in the current paper that extends the the Fukui-Todo procedure is to switch to the original Metropolis-Hastings when the overall lower bound is too small, recovering the geometric ergodicity of this original if it holds (Theorem 2.1). Another neat remark is that when using the naïve factorisation as the product of the n individual likelihoods, the resulting algorithm is sort of doomed as n grows, even with an optimal scaling of the proposals. To achieve scalability, the authors introduce a Taylor (i.e., Gaussian) approximation to each local target in the product and start the acceptance decomposition by using the resulting overall Gaussian approximation. Meaning that the remaining product is now made of ratios of targets over their local Taylor approximations, hence most likely close to one. And potentially lower-bounded by the remainder term in the Taylor expansion. Leading to the conclusion that, when everything goes well, meaning that the Taylor expansions can be conducted and the bounds derived for the appropriate expansion, the order of the Poisson scale is O(1/√n)..! The proposal for the Metropolis-Hastings move is actually tuned to the Gaussian approximation, appearing as a variant of the Langevin move or more exactly a discretization of an Hamiltonian move. Obviously, I cannot judge of the complexity in implementing this new scheme from just reading the paper, but this development on the split target is definitely an exciting prospect for handling huge datasets and their friends!

irreversible Markov chains

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , on November 20, 2018 by xi'an

Werner Krauth (ENS, Paris) was in Dauphine today to present his papers on irreversible Markov chains at the probability seminar. He went back to the 1953 Metropolis et al. paper. And mentioned a 1962 paper I had never heard of by Alder and Wainwright demonstrating phase transition can occur, via simulation. The whole talk was about simulating the stationary distribution of a large number of hard spheres on a one-dimensional ring, which made it hard for me to understand. (Maybe the triathlon before did not help.) And even to realise a part was about PDMPs… His slides included this interesting entry on factorised MCMC which reminded me of delayed acceptance and thinning and prefetching. Plus a notion of lifted Metropolis that could have applications in a general setting, if it differs from delayed rejection.

computational statistics and molecular simulation [18w5023]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on November 16, 2018 by xi'an

This Thursday, our X fertilisation workshop at the interface between molecular dynamics and Monte Carlo statistical methods saw a wee bit of reduction in the audience as some participants had already left Oaxaca. Meaning they missed the talk of Christophe Andrieu on hypocoercivity which could have been another hand-on lecture, given the highly pedagogical contents of the talk. I had seen some parts of the talk in MCqMC 2018 in Rennes and at NUS, but still enjoyed the whole of it very much, and so did the audience given the induced discussion. For instance, previously, I had not seen the connection between the guided random walks of Gustafson and Diaconis, and continuous time processes like PDMP. Which Christophe also covered in his talk. (Also making me realise my colleague Jean Dolbeault in Dauphine was strongly involved in the theoretical analysis of PDMPs!) Then Samuel Power gave another perspective on PDMPs. With another augmentation, connected with time, what he calls trajectorial reversibility. This has the impact of diminishing the event rate, but creates some kind of reversibility which seems to go against the motivation for PDMPs. (Remember that all talks are available as videos on the BIRS webpage.) A remark in the talk worth reiterating is the importance of figuring out which kinds of approximations are acceptable in these approximations. Connecting somewhat with the next talk by Luc Rey-Bellet on a theory of robust approximations. In the sense of Poincaré, Gibbs, Bernstein, &tc. concentration inequalities and large deviations. With applications to rare events.The fourth and final “hand-on” session was run by Miranda Holmes-Certon on simulating under constraints. Motivated by research on colloids. For which the overdamp Langevin diffusion applies as an accurate model, surprisingly. Which makes a major change from the other talks [most of the workshop!] relying on this diffusion. (With an interesting intermede on molecular velcro made of DNA strands.) Connected with this example, exotic energy landscapes are better described by hard constraints. (Potentially interesting extension to the case when there are too many constraints to explore all of them?) Now, the definition of the measure projected on the manifold defined by the constraints is obviously an important step in simulating the distribution, which density is induced by the gradient of the constraints ∇q(x). The proposed algorithm is in the same spirit as the one presented by Tony the previous day, namely moving along the tangent space then on the normal space to get back to the manifold. A solution that causes issues when the gradient is (near) zero. A great hand-on session which induced massive feedback from the audience.

In the afternoon session, Gersende Fort gave a talk on a generalisation of the Wang-Landau algorithm, which modifies the true weights of the elements of a partition of the sampling space, to increase visits to low [probability] elements and jumps between modes. The idea is to rely on tempered versions of the original weights, learned by stochastic approximation. With an extra layer of adaptivity. Leading to an improvement with parameters that depends on the phase of the stochastic approximation. The second talk was by David Sanders on a recent paper in Chaos about importance sampling for rare events of (deterministic) billiard dynamics. With diffusive limits which tails are hard to evaluate, except by importance sampling. And the last talk of the day was by Anton Martinsson on simulated tempering for a molecular alignment problem. With weights of different temperatures proportional to the inverse of the corresponding normalising constants, which themselves can be learned by a form of bridge sampling  if I got it right.

On a very minor note, I heard at breakfast a pretty good story from a fellow participant having to give a talk at a conference that was moved to a very early time in the morning due to an official appearing at a later time and as a result “enjoying” a very small audience to the point that a cleaning lady appeared and started cleaning the board as she could not conceive the talks had already started! Reminding me of this picture at IHP.

computational statistics and molecular simulation [18w5023]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , , , on November 14, 2018 by xi'an

On Day 2, Carsten Hartmann used a representation of the log cumulant as solution to a minimisation problem over a collection of importance functions (by the Vonsker-Varadhan principle), with links to X entropy and optimal control, a theme also considered by Alain Dunmus when considering the uncorrected discretised Langevin diffusion with a decreasing sequence of discretisation scale factors (Jordan, Kinderlehrer and Otto) in the spirit of convex regularisation à la Rockafellar. Also representing ULA as an inexact gradient descent algorithm. Murray Pollock (Warwick) presented a new technique called fusion to simulate from products of d densities, as in scalable MCMC (but not only). With an (early) starting and startling remark that when simulating one realisation from each density in the product and waiting for all of them to be equal means simulating from the product, in a strong link to the (A)BC fundamentals. This is of course impractical and Murray proposes to follow d Brownian bridges all ending up in the average of these simulations, constructing an acceptance probability that is computable and validating the output.

The second “hand-on” lecture was given by Gareth Roberts (Warwick) on the many aspects of scaling MCMC algorithms, which started with the famous 0.234 acceptance rate paper in 1996. While I was aware of some of these results (!), the overall picture was impressive, including a notion of complexity I had not seen before. And a last section on PDMPs where Gareth presented very recent on the different scales of convergence of Zigzag and bouncy particle samplers, mostly to the advantage of Zigzag.In the afternoon, Jeremy Heng presented a continuous time version of simulated tempering by adding a drift to the Langevin diffusion with time-varying energy, which must be solution to the Liouville pde \text{div} \pi_t f = \partial_t \pi_t. Which connects to a flow transport problem when solving the pde under additional conditions. Unclear to me was the creation of the infinite sequence. This talk was very much at the interface in the spirit of the workshop! (Maybe surprisingly complex when considering the endpoint goal of simulating from a given target.) Jonathan Weare’s talk was about quantum chemistry which translated into finding eigenvalues of an operator. Turning in to a change of basis in a inhumanly large space (10¹⁸⁰ dimensions!). Matt Moore presented the work on Raman spectroscopy he did while a postdoc at Warwick, with an SMC based classification of the peaks of a spectrum (to be used on Mars?) and Alessandra Iacobucci (Dauphine) showed us the unexpected thermal features exhibited by simulations of chains of rotors subjected to both thermal and mechanical forcings, which we never discussed in Dauphine beyond joking on her many batch jobs running on our cluster!

And I remembered today that there is currently and in parallel another BIRS workshop on statistical model selection [and a lot of overlap with our themes] taking place in Banff! With snow already there! Unfair or rather #unfair, as someone much too well-known would whine..! Not that I am in a position to complain about the great conditions here in Oaxaca (except for having to truly worry about stray dogs rather than conceptually about bears makes running more of a challenge, if not the altitude since both places are about the same).

short course on MCMC at CiRM [slides]

Posted in Statistics with tags , , , , , , , , , , , , , , , on October 23, 2018 by xi'an

Here are the [recycled] slides for the introductory lecture I gave this morning at CIRM, with the side information that it appears Slideshare has gone to another of these stages when slides cannot be played on this blog [when using Firefox]…

congratulations, Dr. Wu!

Posted in pictures, Statistics, University life with tags , , , , , on October 4, 2018 by xi'an

This afternoon, my (now former) PhD student Changye Wu defended his thesis on Accelerated methods for MCMC, for which the jury awarded him the title of Docteur de l’Université Paris Dauphine. Congratulations to him and best wishes for his job hunting!

coordinate sampler as a non-reversible Gibbs-like MCMC sampler

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , on September 12, 2018 by xi'an

In connection with the talk I gave last July in Rennes for MCqMC 2018, I posted yesterday a preprint on arXiv of the work that my [soon to defend!] Dauphine PhD student Changye Wu and I did on an alternative PDMP. In this novel avatar of the zig-zag sampler,  a  non-reversible, continuous-time MCMC sampler, that we called the Coordinate Sampler, based on a piecewise deterministic Markov process. In addition to establishing the theoretical validity of this new sampling algorithm, we show in the same line as Deligiannidis et al.  (2018) that the Markov chain it induces exhibits geometrical ergodicity for distributions which tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. A few numerical examples (a 2D banana shaped distribution à la Haario et al., 1999, strongly correlated high-dimensional normals, a log-Gaussian Cox process) highlight that our coordinate sampler is more efficient than the zig-zag sampler, in terms of effective sample size.Actually, we had sent this paper before the summer as a NIPS [2018] submission, but it did not make it through [the 4900 submissions this year and] the final review process, being eventually rated above the acceptance bar but not that above!