## ABC-SAEM

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on October 8, 2019 by xi'an

In connection with the recent PhD thesis defence of Juliette Chevallier, in which I took a somewhat virtual part for being physically in Warwick, I read a paper she wrote with Stéphanie Allassonnière on stochastic approximation versions of the EM algorithm. Computing the MAP estimator can be done via some adapted for simulated annealing versions of EM, possibly using MCMC as for instance in the Monolix software and its MCMC-SAEM algorithm. Where SA stands sometimes for stochastic approximation and sometimes for simulated annealing, originally developed by Gilles Celeux and Jean Diebolt, then reframed by Marc Lavielle and Eric Moulines [friends and coauthors]. With an MCMC step because the simulation of the latent variables involves an untractable normalising constant. (Contrary to this paper, Umberto Picchini and Adeline Samson proposed in 2015 a genuine ABC version of this approach, paper that I thought I missed—although I now remember discussing it with Adeline at JSM in Seattle—, ABC is used as a substitute for the conditional distribution of the latent variables given data and parameter. To be used as a substitute for the Q step of the (SA)EM algorithm. One more approximation step and one more simulation step and we would reach a form of ABC-Gibbs!) In this version, there are very few assumptions made on the approximation sequence, except that it converges with the iteration index to the true distribution (for a fixed observed sample) if convergence of ABC-SAEM is to happen. The paper takes as an illustrative sequence a collection of tempered versions of the true conditionals, but this is quite formal as I cannot fathom a feasible simulation from the tempered version and not from the untempered one. It is thus much more a version of tempered SAEM than truly connected with ABC (although a genuine ABC-EM version could be envisioned).

## noise contrastive estimation

Posted in Statistics with tags , , , , , , , , , on July 15, 2019 by xi'an

As I was attending Lionel Riou-Durand’s PhD thesis defence in ENSAE-CREST last week, I had a look at his papers (!). The 2018 noise contrastive paper is written with Nicolas Chopin (both authors share the CREST affiliation with me). Which compares Charlie Geyer’s 1994 bypassing the intractable normalising constant problem by virtue of an artificial logit model with additional simulated data from another distribution ψ.

“Geyer (1994) established the asymptotic properties of the MC-MLE estimates under general conditions; in particular that the x’s are realisations of an ergodic process. This is remarkable, given that most of the theory on M-estimation (i.e.estimation obtained by maximising functions) is restricted to iid data.”

Michael Guttman and Aapo Hyvärinen also use additional simulated data in another likelihood of a logistic classifier, called noise contrastive estimation. Both methods replace the unknown ratio of normalising constants with an unbiased estimate based on the additional simulated data. The major and impressive result in this paper [now published in the Electronic Journal of Statistics] is that the noise contrastive estimation approach always enjoys a smaller variance than Geyer’s solution, at an equivalent computational cost when the actual data observations are iid. And the artificial data simulations ergodic. The difference between both estimators is however negligible against the Monte Carlo error (Theorem 2).

This may be a rather naïve question, but I wonder at the choice of the alternative distribution ψ. With a vague notion that it could be optimised in a GANs perspective. A side result of interest in the paper is to provide a minimal (re)parameterisation of the truncated multivariate Gaussian distribution, if only as an exercise for future exams. Truncated multivariate Gaussian for which the normalising constant is of course unknown.

## postdoc position still open

Posted in pictures, Statistics, University life with tags , , , , , , , , , , , , , , on May 30, 2019 by xi'an

The post-doctoral position supported by the ANR funding of our Paris-Saclay-Montpellier research conglomerate on approximate Bayesian inference and computation remains open for the time being. We are more particularly looking for candidates with a strong background in mathematical statistics, esp. Bayesian non-parametrics, towards the analysis of the limiting behaviour of approximate Bayesian inference. Candidates should email me (gmail address: bayesianstatistics) with a detailed vita (CV) and a motivation letter including a research plan. Letters of recommendation may also be emailed to the same address.

## MCMC importance samplers for intractable likelihoods

Posted in Books, pictures, Statistics with tags , , , , , , , , , , , on May 3, 2019 by xi'an

Jordan Franks just posted on arXiv his PhD dissertation at the University of Jyväskylä, where he discuses several of his works:

1. M. Vihola, J. Helske, and J. Franks. Importance sampling type estimators based on approximate marginal MCMC. Preprint arXiv:1609.02541v5, 2016.
2. J. Franks and M. Vihola. Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance. Preprint arXiv:1706.09873v4, 2017.
3. J. Franks, A. Jasra, K. J. H. Law and M. Vihola.Unbiased inference for discretely observed hidden Markov model diffusions. Preprint arXiv:1807.10259v4, 2018.
4. M. Vihola and J. Franks. On the use of ABC-MCMC with inflated tolerance and post-correction. Preprint arXiv:1902.00412, 2019

focusing on accelerated approximate MCMC (in the sense of pseudo-marginal MCMC) and delayed acceptance (as in our recently accepted paper). Comparing delayed acceptance with MCMC importance sampling to the advantage of the later. And discussing the choice of the tolerance sequence for ABC-MCMC. (Although I did not get from the thesis itself the target of the improvement discussed.)

## absint[he] post-doc on approximate Bayesian inference in Paris, Montpellier and Oxford

Posted in Statistics with tags , , , , , , , , , , , , , on March 18, 2019 by xi'an

As a consequence of its funding by the Agence Nationale de la Recherche (ANR) in 2018, the ABSint research conglomerate is now actively recruiting a post-doctoral collaborator for up to 24 months. The accronym ABSint stands for Approximate Bayesian solutions for inference on large datasets and complex models. The ABSint conglomerate involves researchers located in Paris, Saclay, Montpelliers, as well as Lyon, Marseille, Nice. This call seeks candidates with an excellent research record and who are interested to collaborate with local researchers on approximate Bayesian techniques like ABC, variational Bayes, PAC-Bayes, Bayesian non-parametrics, scalable MCMC, and related topics. A potential direction of research would be the derivation of new Bayesian tools for model checking in such complex environments. The post-doctoral collaborator will be primarily located in Université Paris-Dauphine, with supported periods in Oxford and visits to Montpellier. No teaching duty is attached to this research position.

Applications can be submitted in either English or French. Sufficient working fluency in English is required. While mastering some French does help with daily life in France (!), it is not a prerequisite. The candidate must hold a PhD degree by the date of application (not the date of employment). Position opens on July 01, with possible accommodation for a later start in September or October.

Deadline for application is April 30 or until position filled. Estimated gross salary is around 2500 EUR, depending on experience (years) since PhD. Candidates should contact Christian Robert (gmail address: bayesianstatistics) with a detailed vita (CV) and a motivation letter including a research plan. Letters of recommendation may also be emailed to the same address.