Archive for philosophy of sciences

severe testing or severe sabotage? [not a book review]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , on October 16, 2018 by xi'an

Last week, I received this new book of Deborah Mayo, which I was looking forward reading and annotating!, but thrice alas, the book had been sabotaged: except for the preface and acknowledgements, the entire book is printed upside down [a minor issue since the entire book is concerned] and with some part of the text cut on each side [a few letters each time but enough to make reading a chore!]. I am thus waiting for a tested copy of the book to start reading it in earnest!

 

La déraisonnable efficacité des mathématiques

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , on May 11, 2017 by xi'an

Although it went completely out of my mind, thanks to a rather heavy travel schedule, I gave last week a short interview about the notion of mathematical models, which got broadcast this week on France Culture, one of the French public radio channels. Within the daily La Méthode Scientifique show, which is a one-hour emission on scientific issues, always a [rare] pleasure to listen to. (Including the day they invited Claire Voisin.) The theme of the show that day was about the unreasonable effectiveness of mathematics, with the [classical] questioning of whether it is an efficient tool towards solving scientific (and inference?) problems because the mathematical objects pre-existed their use or we are (pre-)conditioned to use mathematics to solve problems. I somewhat sounded like a dog in a game of skittles, but it was interesting to listen to the philosopher discussing my relativistic perspective [provided you understand French!]. And I appreciated very much the way Céline Loozen the journalist who interviewed me sorted the chaff from the wheat in the original interview to make me sound mostly coherent! (A coincidence: Jean-Michel Marin got interviewed this morning on France Inter, the major public radio, about the Grothendieck papers.)

machine learning and the future of realism

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , on May 4, 2017 by xi'an

Giles and Cliff Hooker arXived a paper last week with this intriguing title. (Giles Hooker is an associate professor of statistics and biology at Cornell U, with an interesting blog on the notion of models, while Cliff Hooker is a professor of philosophy at Newcastle U, Australia.)

“Our conclusion is that simplicity is too complex”

The debate in this short paper is whether or not machine learning relates to a model. Or is it concerned with sheer (“naked”) prediction? And then does it pertain to science any longer?! While it sounds obvious at first, defining why science is more than prediction of effects given causes is much less obvious, although prediction sounds more pragmatic and engineer-like than scientific. (Furthermore, prediction has a somewhat negative flavour in French, being used as a synonym to divination and opposed to prévision.) In more philosophical terms, prediction offers no ontological feature. As for a machine learning structure like a neural network being scientific or a-scientific, its black box nature makes it much more the later than the former, in that it brings no explanation for the connection between input and output, between regressed and regressors. It further lacks the potential for universality of scientific models. For instance, as mentioned in the paper, Newton’s law of gravitation applies to any pair of weighted bodies, while a neural network built on a series of observations could not be assessed or guaranteed outside the domain where those observations are taken. Plus, would miss the simple square law established by Newton. Most fascinating questions, undoubtedly! Putting the stress on models from a totally different perspective from last week at the RSS.

As for machine learning being a challenge to realism, I am none the wiser after reading the paper. Utilising machine learning tools to produce predictions of causes given effects does not seem to modify the structure of the World and very little our understanding of it, since they do not bring explanation per se. What would lead to anti-realism is the adoption of those tools as substitutes for scientific theories and models.

principles or unprincipled?!

Posted in Books, Kids, pictures, Statistics, Travel with tags , , , , , , , on May 2, 2017 by xi'an

A lively and wide-ranging discussion during the Bayes, Fiducial, Frequentist conference was about whether or not we should look for principles. Someone mentioned Terry Speed (2016) claim that it does not help statistics in being principled. Against being efficient. Which gets quite close in my opinion to arguing in favour of a no-U-turn move to machine learning—which requires a significant amount of data to reach this efficiency, as Xiao-Li Meng mentioned—. The debate brought me back to my current running or droning argument on the need to accommodate [more] the difference between models and reality. Not throwing away statistics and models altogether, but developing assessments that are not fully chained to those models. While keeping probabilistic models to handle uncertainty. One pessimistic conclusion I drew from the discussion is that while we [as academic statisticians] may set principles and even teach our students how to run principled and ethical statistical analyses, there is not much we can do about the daily practice of users of statistics…

causality

Posted in Books, Statistics, University life with tags , , , , , , , , , , on March 7, 2016 by xi'an

Oxford University Press sent me this book by Phyllis Illari and Frederica Russo, Causality (Philosophical theory meets scientific practice) a little while ago. (The book appeared in 2014.) Unless I asked for it, I cannot remember…

“The problem is whether and how to use information of general causation established in science to ascertain individual responsibility.” (p.38)

As the subtitle indicates, this is a philosophy book, not a statistics book. And not particularly intended for statisticians. Hence, I am not exactly qualified to analyse its contents, and even less to criticise its lack of connection with statistics. But this being a blog post…  I read rather slowly through the book, which exposes a wide range (“a map”, p.8) of approaches and perspectives on the notions of causality, some ways to infer about causality, and the point of doing all this, concluding with a relativistic (and thus eminently philosophical) viewpoint defending a “pluralistic mosaic” or a “causal mosaic” that relates to all existing accounts of causality as they “each do something valuable” (p.258). From a naïve bystander perspective, this sounds like a new avatar of deconstructionism applied to causality.

“Simulations can be very illuminating about various phenomena that are complex and have unexpected effects (…) can be run repeatedly to study a system in different situations to those seen for the real system…” (p.15)

This is not to state that the book is uninteresting, as it provides a wide entry into philosophical attempts at categorising and defining causality, if not into the statistical aspects of the issue. (For instance, the problem whether or not causality can be proven uniquely from a statistical perspective is not mentioned.) Among those interesting points in the early chapters, a section (2.5) about simulation. Which however misses the depth of this earlier book on climate simulations I reviewed while in Monash. Or of the discussions at the interdisciplinary seminar last year in Hanover. I.J. Good’s probabilistic causality is mentioned but hardly detailed. (With the warning remark that one “should not confuse predictability with determinism [and] determinism with causality”, p.82.) Continue reading

%d bloggers like this: