## Archive for Pierre Simon Laplace

## baseless!

Posted in Books, Statistics with tags 1922, Bayes theorem, epistemic probability, frequency properties, George Boole, history of statistics, inverse probability, normalised maximum likelihood, Pierre Simon Laplace, R.A. Fisher, Siméon Poisson on July 13, 2021 by xi'an## probability that a vaccinated person is shielded from COVID-19?

Posted in Books, Statistics, Travel, University life with tags arXiv, AstraZeneca, binomial distribution, conjugate priors, COVID-19, JAGS, MCMC, medrXiv, Moderna, Pfizer, Pierre Simon Laplace, Thomas Bayes, vaccine on March 10, 2021 by xi'an**O**ver my flight to Montpellier last week, I read an arXival on a Bayesian analysis of the vaccine efficiency. Whose full title is *“What is the probability that a vaccinated person is shielded from Covid-19? A Bayesian MCMC based reanalysis of published data with emphasis on what should be reported as `efficacy'”*, by Giulio D’Agostini and Alfredo Esposito. In short I was not particularly impressed.

“But the real point we wish to highlight, given the spread of distributions, is that we do not have enough data for drawing sound conclusion.”

The reason for this lack of enthusiasm on my side is that, while the authors’ criticism of an excessive precision in Pfizer, Moderna, or AstraZeneca press releases is appropriate, given the published confidence intervals are not claiming the same precision, a Bayesian reanalysis of the published outcome of their respective vaccine trial outcomes does not show much, simply because there is awfully little data, essentially two to four Binomial-like outcomes. Without further data, the modelling is one of a simple graph of Binomial observations, with two or three probability parameters, which results in a very standard Bayesian analysis that does depend on the modelling choices being made, from a highly unrealistic assumption of homogeneity throughout the population(s) tested for the vaccine(s), to a lack of hyperparameters that could have been shared between vaccinated populations. Parts of the arXival are unrelated and unnecessary, like the highly detailed MCMC algorithm for simulating the posterior (incl. JAGS code) to the reminiscence of Bayes’ and Laplace’s early rendering of inverse probability. (I find both interesting and revealing that arXiv, just like medRxiv, posts a warning on top of COVID related preprints.)

## Bertrand-Borel debate

Posted in Books, Statistics with tags Bayes factor, Bayesian hypothesis testing, Bayesian model selection, Bertrand's paradox, conditioning, Deborah Mayo, Emile Borel, Erich Lehmann, Joseph Bertrand, Le Hasard, Pierre Simon Laplace, Pleiades, posterior probability, uniformly most powerful tests on May 6, 2019 by xi'an**O**n her blog, Deborah Mayo briefly mentioned the Bertrand-Borel debate on the (in)feasibility of hypothesis testing, as reported [and translated] by Erich Lehmann. A first interesting feature is that both [starting with] B mathematicians discuss the probability of causes in the Bayesian spirit of Laplace. With Bertrand considering that the prior probabilities of the different causes are impossible to set and then moving all the way to dismiss the use of probability theory in this setting, nipping the p-values in the bud..! And Borel being rather vague about the solution probability theory has to provide. As stressed by Lehmann.

“The Pleiades appear closer to each other than one would naturally expect. This statement deserves thinking about; but when one wants to translate the phenomenon into numbers, the necessary ingredients are lacking. In order to make the vague idea of closeness more precise, should we look for the smallest circle that contains the group? the largest of the angular distances? the sum of squares of all the distances? the area of the spherical polygon of which some of the stars are the vertices and which contains the others in its interior? Each of these quantities is smaller for the group of the Pleiades than seems plausible. Which of them should provide the measure of implausibility? If three of the stars form an equilateral triangle, do we have to add this circumstance, which is certainly very unlikely apriori, to those that point to a cause?” Joseph Bertrand (p.166)

“But whatever objection one can raise from a logical point of view cannot prevent the preceding question from arising in many situations: the theory of probability cannot refuse to examine it and to give an answer; the precision of the response will naturally be limited by the lack of precision in the question; but to refuse to answer under the pretext that the answer cannot be absolutely precise, is to place oneself on purely abstract grounds and tomisunderstand the essential nature of the application of mathematics.” Emile Borel (Chapter 4)

Another highly interesting objection of Bertrand is somewhat linked with his conditioning paradox, namely that the density of the observed unlikely event depends on the choice of the statistic that is used to calibrate the unlikeliness, which makes complete sense in that the information contained in each of these statistics and the resulting probability or likelihood differ to an arbitrary extend, that there are few cases (monotone likelihood ratio) where the choice can be made, and that Bayes factors share the same drawback if they do not condition upon the entire sample. In which case there is no selection of “circonstances remarquables”. Or of uniformly most powerful tests.