“Posterior predictive checks are well-suited to Approximate Bayesian Computation”

Louisiane Lemaire and her coauthors from Grenoble have just arXived a new paper on designing a goodness-of-fit statistic from ABC outputs. The statistic is constructed from a comparison between the observed (summary) statistics and replicated summary statistics generated from the posterior predictive distribution. This is a major difference with the standard ABC distance, when the replicated summary statistics are generated from the prior predictive distribution. The core of the paper is about calibrating a posterior predictive p-value derived from this distance, since it is not properly calibrated in the frequentist sense that it is not uniformly distributed “under the null”. A point I discussed in an ‘Og entry about Andrews’ book a few years ago.

The paper opposes the average distance between ABC acceptable summary statistics and the observed realisation to the average distance between ABC posterior predictive simulations of summary statistics and the observed realisation. In the simplest case (e.g., without a post-processing of the summary statistics), the main difference between both average distances is that the summary statistics are used twice in the first version: first to select the acceptable values of the parameters and a second time for the average distance. Which makes it biased downwards. The second version is more computationally demanding, especially when deriving the associated p-value. It however produces a higher power under the alternative. Obviously depending on how the alternative is defined, since goodness-of-fit is only related to the null, i.e., to a specific model.

From a general perspective, I do not completely agree with the conclusions of the paper in that (a) this is a frequentist assessment and partakes in the shortcomings of p-values and (b) the choice of summary statistics has a huge impact on the decision about the fit since hardly varying statistics are more likely to lead to a good fit than appropriately varying ones.