Archive for predictive justice

Yikes! “AI can predict which criminals may break laws again better than humans”

Posted in Books, pictures, Statistics with tags , , , , , , , on February 28, 2020 by xi'an

Science (the journal!) has this heading on its RSS feed page, which makes me wonder if they have been paying any attention to the well-documented issues with AI driven “justice”.

“…some research has given reason to doubt that algorithms are any better at predicting arrests than humans are.”

Among other issues, the study compared volunteers with COMPAS‘ or LSI-R predictive abilities for predicting violent crime behaviour, based on the same covariates. Volunteers, not experts! And the algorithms are only correct 80% of the time which is a terrible perfomance when someone’s time in jail depends on it!

“Since neither humans nor algorithms show amazing accuracy at predicting whether someone will commit a crime two years down the line, “should we be using [those forecasts] as a metric to determine whether somebody goes free?” Farid says. “My argument is no.””

algorithm for predicting when kids are in danger [guest post]

Posted in Books, Kids, Statistics with tags , , , , , , , , , , , , , , , , , on January 23, 2018 by xi'an

[Last week, I read this article in The New York Times about child abuse prediction software and approached Kristian Lum, of HRDAG, for her opinion on the approach, possibly for a guest post which she kindly and quickly provided!]

A week or so ago, an article about the use of statistical models to predict child abuse was published in the New York Times. The article recounts a heart-breaking story of two young boys who died in a fire due to parental neglect. Despite the fact that social services had received “numerous calls” to report the family, human screeners had not regarded the reports as meeting the criteria to warrant a full investigation. Offered as a solution to imperfect and potentially biased human screeners is the use of computer models that compile data from a variety of sources (jails, alcohol and drug treatment centers, etc.) to output a predicted risk score. The implication here is that had the human screeners had access to such technology, the software might issued a warning that the case was high risk and, based on this warning, the screener might have sent out investigators to intervene, thus saving the children.

These types of models bring up all sorts of interesting questions regarding fairness, equity, transparency, and accountability (which, by the way, are an exciting area of statistical research that I hope some readers here will take up!). For example, most risk assessment models that I have seen are just logistic regressions of [characteristics] on [indicator of undesirable outcome]. In this case, the outcome is likely an indicator of whether child abuse had been determined to take place in the home or not. This raises the issue of whether past determinations of abuse– which make up  the training data that is used to make the risk assessment tool–  are objective, or whether they encode systemic bias against certain groups that will be passed through the tool to result in systematically biased predictions. To quote the article, “All of the data on which the algorithm is based is biased. Black children are, relatively speaking, over-surveilled in our systems, and white children are under-surveilled.” And one need not look further than the same news outlet to find cases in which there have been egregiously unfair determinations of abuse, which disproportionately impact poor and minority communities.  Child abuse isn’t my immediate area of expertise, and so I can’t responsibly comment on whether these types of cases are prevalent enough that the bias they introduce will swamp the utility of the tool.

At the end of the day, we obviously want to prevent all instances of child abuse, and this tool seems to get a lot of things right in terms of transparency and responsible use. And according to the original article, it (at least on the surface) seems to be effective at more efficiently allocating scarce resources to investigate reports of child abuse. As these types of models become used more and more for a wider variety of prediction types, we need to be cognizant that (to quote my brilliant colleague, Josh Norkin) we don’t “lose sight of the fact that because this system is so broken all we are doing is finding new ways to sort our country’s poorest citizens. What we should be finding are new ways to lift people out of poverty.”

%d bloggers like this: