## continuous herded Gibbs sampling

Posted in Books, pictures, Statistics with tags , , , , , , , , on June 28, 2021 by xi'an

Read a short paper by Laura Wolf and Marcus Baum on Gibbs herding, where herding is a technique of “deterministic sampling”, for instance selecting points over the support of the distribution by matching exact and empirical (or “empirical”!) moments. Which reminds me of the principal points devised by my late friend Bernhard Flury. With an unclear argument as to why it could take over random sampling:

“random numbers are often generated by pseudo-random number generators, hence are not truly random”

Especially since the aim is to “draw samples from continuous multivariate probability densities.” The sequential construction of such a sample proceeds sequentially by adding a new (T+1)-th point to the existing sample of y’s by maximising in x the discrepancy

$(T+1)\mathbb E^Y[k(x,Y)]-\sum_{t=1}^T k(x,y_t)$

where k(·,·) is a kernel, e.g. a Gaussian density. Hence a complexity that grows as O(T). The current paper suggests using Gibbs “sampling” to update one component of x at a time. Using the conditional version of the above discrepancy. Making the complexity grow as O(dT) in d dimensions.

I remain puzzled by the whole thing as these samples cannot be used as regular random or quasi-random samples. And in particular do not produce unbiased estimators of anything. Obviously. The production of such samples being furthermore computationally costly it is also unclear to me that they could even be used for quick & dirty approximations of a target sample.

## population quasi-Monte Carlo

Posted in Books, Statistics with tags , , , , , , , , , , , , on January 28, 2021 by xi'an

“Population Monte Carlo (PMC) is an important class of Monte Carlo methods, which utilizes a population of proposals to generate weighted samples that approximate the target distribution”

A return of the prodigal son!, with this arXival by Huang, Joseph, and Mak, of a paper on population Monte Carlo using quasi-random sequences. The construct is based on an earlier notion of Joseph and Mak, support points, which are defined wrt a given target distribution F as minimising the variability of a sample from F away from these points. (I would have used instead my late friend Bernhard Flury’s principal points!) The proposal uses Owen-style scrambled Sobol points, followed by a deterministic mixture weighting à la PMC, followed by importance support resampling to find the next location parameters of the proposal mixture (which is why I included an unrelated mixture surface as my post picture!). This importance support resampling is obviously less variable than the more traditional ways of resampling but the cost moves from O(M) to O(M²).

“The main computational complexity of the algorithm is O(M²) from computing the pairwise distance of the M weighted samples”

The covariance parameters are updated as in our 2008 paper. This new proposal is interesting and reasonable, with apparent significant gains, albeit I would have liked to see a clearer discussion of the actual computing costs of PQMC.

## is there such a thing as optimal subsampling?

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on June 12, 2020 by xi'an

This idea of optimal thinnin and burnin has been around since the early days of the MCMC revolution and did not come up with a definite answer. For instance, from a pure estimation perspective, subsampling always increases the variance of the resulting estimator. My personal approach is to ignore both burnin and thinnin and rather waste time on running several copies of the code to check for potential discrepancies and get a crude notion of the variability. And to refuse to answer to questions like is 5000 iterations long enough for burnin?

A recent arXival by Riabiz et al. readdresses the issue. In particular concerning this notion that the variance of the subsampled version is higher: this only applies to a deterministic subsampling, as opposed to an MCMC-based subsampling (although this intricacy only makes the problem harder!). I however fail to understand the argument in favour of subsampling based on storage issues (p.4), as a dynamic storage of the running mean for all quantities of interest does not cost anything if the integrand is not particularly demanding. I also disagree at the pessimistic view that the asymptotic variance of the MCMC estimate is hard to estimate: papers by Flegal, Hobert, Jones, Vat and others have rather clearly shown how batch means can produce converging estimates of this asymptotic variance.

“We do not to attempt to solve a continuous optimisation problem for selection of the next point [in the sample]. Such optimisation problems are fundamentally difficult and can at best be approximately solved. Instead, we exactly solve the discrete optimisation problem of selecting a suitable element from a supplied MCMC output.”

One definitely positive aspect of the paper is that the (thinning) method is called Stein thinning, in connection with Stein’s discrepancy, and this honours Charles Stein. The method looks at the optimal subsample, with optimality defined in terms of minimising Stein’s discrepancy from the true target over a reproducible kernel Hilbert space. And then over a subsample to minimise the distance from the empirical distribution to the theoretical distribution. The kernel (11) is based on the gradient of the target log density and the solution is determined by greedy algorithms that determine which next entry to add to the empirical distribution. Which is of complexity O(nm2) if the subsample is of size m. Some entries may appear more than once and the burnin step could be automatically included as (relatively) unlikely values are never selected (at least this was my heuristic understanding). While the theoretical backup for the construct is present and backed by earlier papers of some of the authors, I do wonder at the use of the most rudimentary representation of an approximation to the target when smoother versions could have been chosen and optimised on the same ground. And I am also surprised at the dependence of both estimators and discrepancies on the choice of the (sort-of) covariance matrix in the inner kernel, as the ODE examples provided in the paper (see, e.g., Figure 7). (As an aside and at a shallow level, the approach also reminded me of the principal points of my late friend Bernhard Flury…) Storage of all MCMC simulations for a later post-processing is of course costly in terms of storage, at O(nm). Unless a “secretary problem” approach can be proposed to get sequential. Another possible alternate would be to consider directly the chain of the accepted values (à la vanilla Rao-Blackwellisation). Overall, since the stopping criterion is based on a fixed sample size, and hence depends on the sub-efficiency of evaluating the mass of different modes, I am unsure the method is anything but what-you-get-is-what-you-see, i.e. prone to get misled by a poor exploration of the complete support of the target.

“This paper focuses on nonuniform subsampling and shows that it is more efficiency than uniform subsampling.”

Two weeks later, Guanyu Hu and Hai Ying Wang arXived their Most Likely Optimal Subsampled Markov Chain Monte Carlo, in what I first thought as an answer to the above! But both actually have little in common as this second paper considers subsampling on the data, rather than the MCMC output, towards producing scalable algorithms. Building upon Bardenet et al. (2014) and Korattikara et al. (2014).  Replacing thus the log-likelihood with a random sub-sampled version and deriving the sample size based on a large deviation inequality. By a Cauchy-Schwartz inequality, the authors find sampling probabilities proportional to the individual log-likelihooods. Which depend on the running value of the MCMC’ed parameters. And thus replaced with the values at a fixed parameter, with cost O(n) but only once, but no so much optimal. (The large deviation inequality therein is only concerned with an approximation to the log-likelihood, without examining the long term impact on the convergence of the approximate Markov chain as this is no longer pseudo-marginal MCMC. For instance, both current and prospective log-likelihoods are re-estimated at each iteration. The paper compares with uniform sampling on toy examples,  to demonstrate a smaller estimation error for the statistical problem, rather than convergence to the true posterior.)