Archive for prior construction

commentaries in financial econometrics

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on April 27, 2016 by xi'an

My comment(arie)s on the moment approach to Bayesian inference by Ron Gallant have appeared, along with other comment(arie)s:

Invited Article
Reflections on the Probability Space Induced by Moment Conditions with
Implications for Bayesian Inference
A. Ronald Gallant . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Commentaries
Dante Amengual and Enrique Sentana .. . . . . . . . . . 248
John Geweke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Jae-Young Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Oliver Linton and Ruochen Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261
Christian P. Robert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Christopher A. Sims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Wei Wei and Asger Lunde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .278
Author Response
A. Ronald Gallant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

formula (4) in Gallant's paperWhile commenting on commentaries is formally bound to induce an infinite loop [or l∞p], I remain puzzled by the main point of the paper, which is that setting a structural distribution on a moment function Z(x,θ) plus a prior p(θ) induces a distribution on the pair (x,θ) in a possibly weaker σ-algebra. (The two distributions may actually be incompatible.) Handling this framework requires checking that a posterior exists, which sounds rather unnatural (even though we also have to check properness of the posterior). And the meaning of such a posterior remains unclear, as for instance in this assertion that (4) above is a likelihood, when it does not define a density in x but on the object inside the exponential.

“…it is typically difficult to determine whether there exists a p(x|θ) such that the implied distribution of m(x,θ) is the one stated, and if not, what damage is done thereby” J. Geweke (p.254)

Continue reading

Bayesian ideas and data analysis

Posted in Books, R, Statistics, Travel, University life with tags , , , , , , , , , , , , , on October 31, 2011 by xi'an

Here is [yet!] another Bayesian textbook that appeared recently. I read it in the past few days and, despite my obvious biases and prejudices, I liked it very much! It has a lot in common (at least in spirit) with our Bayesian Core, which may explain why I feel so benevolent towards Bayesian ideas and data analysis. Just like ours, the book by Ron Christensen, Wes Johnson, Adam Branscum, and Timothy Hanson is indeed focused on explaining the Bayesian ideas through (real) examples and it covers a lot of regression models, all the way to non-parametrics. It contains a good proportion of WinBugs and R codes. It intermingles methodology and computational chapters in the first part, before moving to the serious business of analysing more and more complex regression models. Exercises appear throughout the text rather than at the end of the chapters. As the volume of their book is more important (over 500 pages), the authors spend more time on analysing various datasets for each chapter and, more importantly, provide a rather unique entry on prior assessment and construction. Especially in the regression chapters. The author index is rather original in that it links the authors with more than one entry to the topics they are connected with (Ron Christensen winning the game with the highest number of entries).  Continue reading