In an arXived preprint submitted to Computational Statistics & Data Analysis, Chan, Han, and Lim study alternatives to EM for latent class models. That is, mixtures of products of Multinomials. (First occurrence of an indicator function being called the “Iverson bracket function”!) The introduction is fairly extensive given this most studied model. The criticisms of EM laid by the authors are that (a) it does not produce an evaluation of the estimation error, which does not sound correct; (b) the convergence is slow, which is also rather misleading as my [low dimensional] experience with mixtures is that it gets very quickly and apparently linearly to the vicinity of one of the modes. The argument in favour of alternative non-linear optimisation approaches is that they can achieve quadratic convergence. One solution is a projected Quasi-Newton method, based on a quadratic approximation to the target. With some additional intricacies that make the claim of being “way easier than EM algorithm” somewhat specious. The second approach proposed in the paper is sequential quadratic programming, which incorporates the Lagrange multiplier in the target. While the different simulations in the paper show that EM may indeed call for a much larger number of iterations, the obtained likelihoods all are comparable.
Archive for quasi-Newton resolution
alternatives to EM
Posted in Books, Statistics with tags Computational Statistics and Data Analysis, EM algorithm, finite mixtures, Iverson bracket function, Lagrangian, latent class model, multinomial distribution, quasi-Newton resolution on January 30, 2019 by xi'anasymptotically exact inference in likelihood-free models [a reply from the authors]
Posted in R, Statistics with tags ABC, ABC-MCMC, arXiv, Edinburgh, generator, Hamiltonian, HMC, Jacobian, likelihood-free methods, Lotka-Volterra, manifold, normalisation, pseudo-marginal MCMC, quasi-Newton resolution, reply, Riemann manifold, simulation under restrictions, simulator model on December 1, 2016 by xi'an[Following my post of lastTuesday, Matt Graham commented on the paper with force détails. Here are those comments. A nicer HTML version of the Markdown reply below is also available on Github.]
Thanks for the comments on the paper!
A few additional replies to augment what Amos wrote:
This however sounds somewhat intense in that it involves a quasi-Newton resolution at each step.
The method is definitely computationally expensive. If the constraint function is of the form of a function from an M-dimensional space to an N-dimensional space, with M≥N, for large N the dominant costs at each timestep are usually the constraint Jacobian (∂c/∂u) evaluation (with reverse-mode automatic differentiation this can be evaluated at a cost of O(N) generator / constraint evaluations) and Cholesky decomposition of the Jacobian product (∂c/∂u)(∂c/∂u)‘ with O(N³) cost (though in many cases e.g. i.i.d. or Markovian simulated data, structure in the generator Jacobian can be exploited to give a significantly reduced cost). Each inner Quasi-Newton update involves a pair of triangular solve operations which have a O(N²) cost, two matrix-vector multiplications with O(MN) cost, and a single constraint / generator function evaluation; the number of Quasi-Newton updates required for convergence in the numerical experiments tended to be much less than N hence the Quasi-Newton iteration tended not to be the main cost.
The high computation cost per update is traded off however with often being able to make much larger proposed moves in high-dimensional state spaces with a high chance of acceptance compared to ABC MCMC approaches. Even in the relatively small Lotka-Volterra example we provide which has an input dimension of 104 (four inputs which map to ‘parameters’, and 100 inputs which map to ‘noise’ variables), the ABC MCMC chains using the coarse ABC kernel radius ϵ=100 with comparably very cheap updates were significantly less efficient in terms of effective sample size / computation time than the proposed constrained HMC approach. This was in large part due to the elliptical slice sampling updates in the ABC MCMC chains generally collapsing down to very small moves even for this relatively coarse ϵ. Performance was even worse using non-adaptive ABC MCMC methods and for smaller ϵ, and for higher input dimensions (e.g. using a longer sequence with correspondingly more random inputs) the comparison becomes even more favourable for the constrained HMC approach. Continue reading