**I** just received the very sad news that Don Fraser, emeritus professor of statistics at the University of Toronto, passed away this Monday, 21 December 2020. He was a giant of the field, with a unique ability for abstract modelling and he certainly pushed fiducial statistics much further than Fisher ever did. He also developed a theory of structural inference that came close to objective Bayesian statistics, although he remained quite critical of the Bayesian approach (always in a most gentle manner, as he was a very nice man!). And most significantly contributed to high order asymptotics, to the critical analysis of ancilarity and sufficiency principles, and more beyond. (Statistical Science published a conversation with Don, in 2004, providing more personal views on his career till then.) I met with Don and Nancy rather regularly over the years, as they often attended and talked at (objective) Bayesian meetings, from the 1999 edition in Granada, to the last one in Warwick in 2019. I also remember a most enjoyable barbecue together, along with Ivar Ekeland and his family, during JSM 2018, on Jericho Park Beach, with a magnificent sunset over the Burrard Inlet. Farewell, Don!

## Archive for R.A. Fisher

## Don Fraser (1925-2020)

Posted in Books, Statistics, University life with tags asymptotics, Canada, David Cox, Don Fraser, fiducial inference, fiducial statistics, John Nelder, Nancy Reid, O'Bayes 2019, obituary, Ontario, R.A. Fisher, Statistical Science, University of Toronto, University of Warwick, University of Waterloo on December 24, 2020 by xi'an## down with Galton (and Pearson and Fisher…)

Posted in Books, Statistics, University life with tags Annals of Eugenics, Biometrika, eugenics, Francis Galton, Genetics, history of statistics, honours, Karl Pearson, London, physiognomy, population genetics, R.A. Fisher, racism, Stephen Stigler, UCL, University College London on July 22, 2019 by xi'an

**I**n the last issue of Significance, which I read in Warwick prior to the conference, there is a most interesting article on Galton’s eugenics, his heritage at University College London (UCL), and the overall trouble with honouring prominent figures of the past with memorials like named building or lectures… The starting point of this debate is a protest from some UCL students and faculty about UCL having a lecture room named after the late Francis Galton who was a professor there. Who further donated at his death most of his fortune to the university towards creating a professorship in eugenics. The protests are about Galton’s involvement in the eugenics movement of the late 18th and early 19th century. As well as professing racist opinions.

My first reaction after reading about these protests was *why not?!* Named places or lectures, as well as statues and other memorials, have a limited utility, especially when the named person is long dead and they certainly do not contribute in making a scientific theory [associated with the said individual] more appealing or more valid. And since “humans are [only] humans”, to quote Stephen Stigler speaking in this article, it is unrealistic to expect great scientists to be perfect, the more if one multiplies the codes for ethical or acceptable behaviours across ages and cultures. It is also more rational to use amphitheater MS.02 and lecture room AC.18 rather than associate them with one name chosen out of many alumni’s or former professors’.

Predictably, another reaction of mine was *why bother?!,* as removing Galton’s name from the items it is attached to is highly unlikely to change current views on eugenism or racism. On the opposite, it seems to detract from opposing the present versions of these ideologies. As some recent proposals linking genes and some form of academic success. Another of my (multiple) reactions was that as stated in the article these views of Galton’s reflected upon the views and prejudices of the time, when the notions of races and inequalities between races (as well as genders and social classes) were almost universally accepted, including in scientific publications like the proceedings of the Royal Society and Nature. When Karl Pearson launched the Annals of Eugenics in 1925 (after he started Biometrika) with the very purpose of establishing a scientific basis for eugenics. (An editorship that Ronald Fisher would later take over, along with his views on the differences between races, believing that “human groups differ profoundly in their innate capacity for intellectual and emotional development”.) Starting from these prejudiced views, Galton set up a scientific and statistical approach to support them, by accumulating data and possibly modifying some of these views. But without much empathy for the consequences, as shown in this terrible quote I found when looking for more material:

“I should feel but little compassion if I saw all the Damaras in the hand of a slave-owner, for they could hardly become more wretched than they are now…”

As it happens, my first exposure to Galton was in my first probability course at ENSAE when a terrific professor was peppering his lectures with historical anecdotes and used to mention Galton’s data-gathering trip to Namibia, literally measure local inhabitants towards his physiognomical views , also reflected in the above attempt of his to superpose photographs to achieve the “ideal” thief…

## are there a frequentist and a Bayesian likelihoods?

Posted in Statistics with tags Bayes factor, Bayes formula, cross validated, dominating measure, Harold Jeffreys, likelihood function, Metron, probability theory, R.A. Fisher, University of Amsterdam, wikipedia on June 7, 2018 by xi'an**A** question that came up on X validated and led me to spot rather poor entries in Wikipedia about both the likelihood function and Bayes’ Theorem. Where unnecessary and confusing distinctions are made between the frequentist and Bayesian versions of these notions. I have already discussed the later (Bayes’ theorem) a fair amount here. The discussion about the likelihood is quite bemusing, in that the likelihood function is the … function of the parameter equal to the density indexed by this parameter at the observed value.

“What we can find from a sample is the likelihood of any particular value of r, if we define the likelihood as a quantity proportional to the probability that, from a population having the particular value of r, a sample having the observed value of r, should be obtained.”R.A. Fisher,On the “probable error’’ of a coefficient of correlation deduced from a small sample.Metron1, 1921, p.24

By mentioning an informal side to likelihood (rather than to likelihood function), and then stating that the likelihood is not a probability in the frequentist version but a probability in the Bayesian version, the W page makes a complete and unnecessary mess. Whoever is ready to rewrite this introduction is more than welcome! (Which reminded me of an earlier question also on X validated asking why a common reference measure was needed to define a likelihood function.)

This also led me to read a recent paper by Alexander Etz, whom I met at E.J. Wagenmakers‘ lab in Amsterdam a few years ago. Following Fisher, as Jeffreys complained about

“..likelihood, a convenient term introduced by Professor R.A. Fisher, though in his usage it is sometimes multiplied by a constant factor. This is the probability of the observations given the original information and the hypothesis under discussion.”H. Jeffreys,Theory of Probability, 1939, p.28

Alexander defines the likelihood up to a constant, which causes extra-confusion, for free!, as there is no foundational reason to introduce this degree of freedom rather than imposing an exact equality with the density of the data (albeit with an arbitrary choice of dominating measure, never neglect the dominating measure!). The paper also repeats the message that the likelihood is not a probability (density, *missing in the paper*). And provides intuitions about maximum likelihood, likelihood ratio and Wald tests. But does not venture into a separate definition of the likelihood, being satisfied with the fundamental notion to be plugged into the magical formula

posterior∝prior×likelihood