## why does rbinom(1,1) differ from sample(0:1,1) with the same seed?

Posted in Statistics with tags , , , , , , , , , on February 17, 2021 by xi'an
> set.seed(1)
> rbinom(10,1,0.5)
 0 0 1 1 0 1 1 1 1 0
> set.seed(1)
> sample(c(0,1), 10, replace = TRUE)
 0 1 0 1 0 0 1 0 1 1

This rather legitimate question was posted on X validated last week, the answer being that the C codes behind both functions do not use pseudo-random generators in the same manner. For instance, rbinom does get involved beyond a mean value of 30 (and otherwise resorts to the inverse cdf approach). And following worries about sample biases, sample was updated in 2019 (and also seems to resort to the inverse cdf when the mean is less than 200). However, when running the above code on my machine, still using the 2018 R version 3.4.4!, I recover the same outcome:

> set.seed(1)
> rbinom(10,1,0.5)
 0 0 1 1 0 1 1 1 1 0

> set.seed(1)
> sample(c(0,1), 10, replace = TRUE)
 0 0 1 1 0 1 1 1 1 0> set.seed(1)
> qbinom(runif(10),1,0.5)
 0 0 1 1 0 1 1 1 1 0
> set.seed(1)
> 1*(runif(10)>.5)
 0 0 1 1 0 1 1 1 1 0


## Hamiltonian ABC

Posted in Books, pictures, Statistics, University life with tags , , , , , , , on March 13, 2015 by xi'an On Monday, Ed Meeds, Robert Leenders, and Max Welling (from Amsterdam) arXived a paper entitled Hamiltonian ABC. Before looking at the paper in any detail, I got puzzled by this association of antagonistic terms, since ABC is intended for complex and mostly intractable likelihoods, while Hamiltonian Monte Carlo requires a lot from the target, in order to compute gradients and Hessians… [Warning: some graphs on pages 13-14 may be harmful to your printer!]

Somewhat obviously (ex-post!), the paper suggests to use Hamiltonian dynamics on ABC approximations of the likelihood. They compare a Gaussian kernel version $\frac{1}{S}\sum_{s=1}^S \varphi(y^\text{obs}-x_s(\theta);\epsilon^2)$

with the synthetic Gaussian likelihood version of Wood (2010) $\varphi(y^\text{obs}-\mu(\theta);\sigma(\theta)^2+\epsilon^2)$

where both mean and variance are estimated from the simulated data. If ε is taken as an external quantity and driven to zero, the second approach is much more stable. But… ε is never driven to zero in ABC, or fixed at ε=0.37: It is instead considered as a kernel bandwidth and hence estimated from the simulated data. Hence ε is commensurable with σ(θ).  And this makes me wonder at the relevance of the conclusion that synthetic is better than kernel for Hamiltonian ABC. More globally, I wonder at the relevance of better simulating from a still approximate target when the true goal is to better approximate the genuine posterior.

Some of the paper covers separate issues like handling gradient by finite differences à la Spall [if you can afford it!] and incorporating the random generator as part of the Markov chain. And using S common random numbers in computing the gradients for all values of θ. (Although I am not certain all random generators can be represented as a deterministic transform of a parameter θ and of a fixed number of random uniforms. But the authors may consider a random number of random uniforms when they represent their random generators as deterministic transform of a parameter θ and of the random seed. I am also uncertain about the distinction between common, sticky, and persistent random numbers!)