Archive for rare events

rare ABC [webinar impressions]

Posted in Books, Statistics, Travel, University life with tags , , , , , , , on April 28, 2020 by xi'an

A second occurrence of the One World ABC seminar by Ivis Kerama, and Richard Everitt (Warwick U), on their on-going pape with and Tom Thorne, Rare Event ABC-SMC², which is not about rare event simulation but truly about ABC improvement. Building upon a previous paper by Prangle et al. (2018). And also connected with Dennis’ talk a fortnight ago in that it exploits an autoencoder representation of the simulated outcome being H(u,θ). It also reminded me of an earlier talk by Nicolas Chopin.

This approach avoids using summary statistics (but relies on a particular distance) and implements a biased sampling of the u’s to produce outcomes more suited to the observation(s). Almost sounds like a fiducial ABC! Their stopping rule for decreasing the tolerance is to spot an increase in the variance of the likelihood estimates. As the method requires many data generations for a single θ, it only applies in certain settings. The ABC approximation is indeed used as an estimation of likelihood ratio (which makes sense for SMC² but is biased because of ABC). I got slightly confused during Richard’s talk by his using the term of unbiased estimator of the likelihood before I realised he was talking of the ABC posterior. Thanks to both speakers, looking forward the talk by Umberto Picchini in a fortnight (on a joint paper with Richard).

rare events for ABC

Posted in Books, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , on November 24, 2016 by xi'an

Dennis Prangle, Richard G. Everitt and Theodore Kypraios just arXived a new paper on ABC, aiming at handling high dimensional data with latent variables, thanks to a cascading (or nested) approximation of the probability of a near coincidence between the observed data and the ABC simulated data. The approach amalgamates a rare event simulation method based on SMC, pseudo-marginal Metropolis-Hastings and of course ABC. The rare event is the near coincidence of the observed summary and of a simulated summary. This is so rare that regular ABC is forced to accept not so near coincidences. Especially as the dimension increases.  I mentioned nested above purposedly because I find that the rare event simulation method of Cérou et al. (2012) has a nested sampling flavour, in that each move of the particle system (in the sample space) is done according to a constrained MCMC move. Constraint derived from the distance between observed and simulated samples. Finding an efficient move of that kind may prove difficult or impossible. The authors opt for a slice sampler, proposed by Murray and Graham (2016), however they assume that the distribution of the latent variables is uniform over a unit hypercube, an assumption I do not fully understand. For the pseudo-marginal aspect, note that while the approach produces a better and faster evaluation of the likelihood, it remains an ABC likelihood and not the original likelihood. Because the estimate of the ABC likelihood is monotonic in the number of terms, a proposal can be terminated earlier without inducing a bias in the method.

Lake Louise, Banff National Park, March 21, 2012This is certainly an innovative approach of clear interest and I hope we will discuss it at length at our BIRS ABC 15w5025 workshop next February. At this stage of light reading, I am slightly overwhelmed by the combination of so many computational techniques altogether towards a single algorithm. The authors argue there is very little calibration involved, but so many steps have to depend on as many configuration choices.

an extension of nested sampling

Posted in Books, Statistics, University life with tags , , , , , , , on December 16, 2014 by xi'an

I was reading [in the Paris métro] Hastings-Metropolis algorithm on Markov chains for small-probability estimation, arXived a few weeks ago by François Bachoc, Lionel Lenôtre, and Achref Bachouch, when I came upon their first algorithm that reminded me much of nested sampling: the following was proposed by Guyader et al. in 2011,

To approximate a tail probability P(H(X)>h),

  • start from an iid sample of size N from the reference distribution;
  • at each iteration m, select the point x with the smallest H(x)=ξ and replace it with a new point y simulated under the constraint H(y)≥ξ;
  • stop when all points in the sample are such that H(X)>h;
  • take

\left(1-\dfrac{1}{N}\right)^{m-1}

as the unbiased estimator of P(H(X)>h).

Hence, except for the stopping rule, this is the same implementation as nested sampling. Furthermore, Guyader et al. (2011) also take advantage of the bested sampling fact that, if direct simulation under the constraint H(y)≥ξ is infeasible, simulating via one single step of a Metropolis-Hastings algorithm is as valid as direct simulation. (I could not access the paper, but the reference list of Guyader et al. (2011) includes both original papers by John Skilling, so the connection must be made in the paper.) What I find most interesting in this algorithm is that it even achieves unbiasedness (even in the MCMC case!).

computational methods for statistical mechanics [day #3]

Posted in Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on June 6, 2014 by xi'an

Arthur Seat, Edinburgh, Sep. 7, 2011

The third day [morn] at our ICMS workshop was dedicated to path sampling. And rare events. Much more into [my taste] Monte Carlo territory. The first talk by Rosalind Allen looked at reweighting trajectories that are not in an equilibrium or are missing the Boltzmann [normalizing] constant. Although the derivation against a calibration parameter looked like the primary goal rather than the tool for constant estimation. Again papers in J. Chem. Phys.! And a potential link with ABC raised by Antonietta Mira… Then Jonathan Weare discussed stratification. With a nice trick of expressing the normalising constants of the different terms in the partition as solution(s) of a Markov system

v\mathbf{M}=v

Because the stochastic matrix M is easier (?) to approximate. Valleau’s and Torrie’s umbrella sampling was a constant reference in this morning of talks. Arnaud Guyader’s talk was in the continuation of Toni Lelièvre’s introduction, which helped a lot in my better understanding of the concepts. Rephrasing things in more statistical terms. Like the distinction between equilibrium and paths. Or bias being importance sampling. Frédéric Cérou actually gave a sort of second part to Arnaud’s talk, using importance splitting algorithms. Presenting an algorithm for simulating rare events that sounded like an opposite nested sampling, where the goal is to get down the target, rather than up. Pushing particles away from a current level of the target function with probability ½. Michela Ottobre completed the series with an entry into diffusion limits in the Roberts-Gelman-Gilks spirit when the Markov chain is not yet stationary. In the transient phase thus.

Split Sampling: expectations, normalisation and rare events

Posted in Books, Statistics, University life with tags , , , , , , on January 27, 2014 by xi'an

Just before Christmas (a year ago), John Birge, Changgee Chang, and Nick Polson arXived a paper with the above title. Split sampling is presented a a tool conceived to handle rare event probabilities, written in this paper as

Z(m)=\mathbb{E}_\pi[\mathbb{I}\{L(X)>m\}]

where π is the prior and L the likelihood, m being a large enough bound to make the probability small. However, given John Skilling’s representation of the marginal likelihood as the integral of the Z(m)’s, this simulation technique also applies to the approximation of the evidence. The paper refers from the start to nested sampling as a motivation for this method, presumably not as a way to run nested sampling, which was created as a tool for evidence evaluation, but as a competitor. Nested sampling may indeed face difficulties in handling the coverage of the higher likelihood regions under the prior and it is an approximative method, as we detailed in our earlier paper with Nicolas Chopin. The difference between nested and split sampling is that split sampling adds a distribution ω(m) on the likelihood levels m. If pairs (x,m) can be efficiently generated by MCMC for the target

\pi(x)\omega(m)\mathbb{I}\{L(X)>m\},

the marginal density of m can then be approximated by Rao-Blackwellisation. From which the authors derive an estimate of Z(m), since the marginal is actually proportional to ω(m)Z(m). (Because of the Rao-Blackwell argument, I wonder how much this differs from Chib’s 1995 method, i.e. if the split sampling estimator could be expressed as a special case of Chib’s estimator.) The resulting estimator of the marginal also requires a choice of ω(m) such that the associated cdf can be computed analytically. More generally, the choice of ω(m) impacts the quality of the approximation since it determines how often and easily high likelihood regions will be hit. Note also that the conditional π(x|m) is the same as in nested sampling, hence may run into difficulties for complex likelihoods or large datasets.

When reading the beginning of the paper, the remark that “the chain will visit each level roughly uniformly” (p.13) made me wonder at a possible correspondence with the Wang-Landau estimator. Until I read the reference to Jacob and Ryder (2012) on page 16. Once again, I wonder at a stronger link between both papers since the Wang-Landau approach aims at optimising the exploration of the simulation space towards a flat histogram. See for instance Figure 2.

The following part of the paper draws a comparison with both nested sampling and the product estimator of Fishman (1994). I do not fully understand the consequences of the equivalence between those estimators and the split sampling estimator for specific choices of the weight function ω(m). Indeed, it seemed to me that the main point was to draw from a joint density on (x,m) to avoid the difficulties of exploring separately each level set. And also avoiding the approximation issues of nested sampling. As a side remark, the fact that the harmonic mean estimator occurs at several points of the paper makes me worried. The qualification of “poor Monte Carlo error variances properties” is an understatement for the harmonic mean estimator, as it generally has infinite variance and it hence should not be used at all, even as a starting point. The paper does not elaborate much about the cross-entropy method, despite using an example from Rubinstein and Kroese (2004).

In conclusion, an interesting paper that made me think anew about the nested sampling approach, which keeps its fascination over the years! I will most likely use it to build an MSc thesis project this summer in Warwick.

%d bloggers like this: