**I**n 2018, Panayiota Touloupou, research fellow at Warwick, and her co-authors published a paper in Bayesian analysis that somehow escaped my radar, despite standing in my first circle of topics of interest! They construct an importance sampling approach to the approximation of the marginal likelihood, the importance function being approximated from a preliminary MCMC run, and consider the special case when the sampling density (i.e., the likelihood) can be represented as the marginal of a joint density. While this demarginalisation perspective is rather usual, the central point they make is that it is more efficient to estimate the sampling density based on the auxiliary or latent variables than to consider the joint posterior distribution of parameter and latent in the importance sampler. This induces a considerable reduction in dimension and hence explains (in part) why the approach should prove more efficient. Even though the approximation itself is costly, at about 5 seconds per marginal likelihood. But a nice feature of the paper is to include the above graph that includes both computing time and variability for different methods (the blue range corresponding to the marginal importance solution, the red range to RJMCMC and the green range to Chib’s estimate). Note that bridge sampling does not appear on the picture but returns a variability that is similar to the proposed methodology.

## Archive for reversible jump

## marginal likelihood with large amounts of missing data

Posted in Books, pictures, Statistics with tags Bayesian Analysis, Chib's approximation, evidence, harmonic mean estimator, importance sampling, marginal likelihood, normalising constant, reversible jump, University of Warwick on October 20, 2020 by xi'an## mixture models with a prior on the number of components

Posted in Books, Statistics, University life with tags Bayesian asymptotics, Bayesian non-parametrics, Chinese restaurant process, consistency, Dirichlet mixture priors, Dirichlet process, mixtures, reversible jump on March 6, 2015 by xi'an

“From a Bayesian perspective, perhaps the most natural approach is to treat the numberof components like any other unknown parameter and put a prior on it.”

**A**nother mixture paper on arXiv! Indeed, Jeffrey Miller and Matthew Harrison recently arXived a paper on estimating the number of components in a mixture model, comparing the parametric with the non-parametric Dirichlet prior approaches. Since priors can be chosen towards agreement between those. This is an obviously interesting issue, as they are often opposed in modelling debates. The above graph shows a crystal clear agreement between finite component mixture modelling and Dirichlet process modelling. The same happens for classification. However, Dirichlet process priors do not return an estimate of the number of components, which may be considered a drawback if one considers this is an identifiable quantity in a mixture model… But the paper stresses that the number of estimated clusters under the Dirichlet process modelling tends to be larger than the number of components in the finite case. Hence that the Dirichlet process mixture modelling is not consistent in that respect, producing parasite extra clusters…

In the parametric modelling, the authors assume the same scale is used in all Dirichlet priors, that is, for all values of k, the number of components. Which means an incoherence when marginalising from k to (k-p) components. Mild incoherence, in fact, as the parameters of the different models do not have to share the same priors. And, as shown by Proposition 3.3 in the paper, this does not prevent coherence in the marginal distribution of the latent variables. The authors also draw a comparison between the distribution of the partition in the finite mixture case and the Chinese restaurant process associated with the partition in the infinite case. A further analogy is that the finite case allows for a stick breaking representation. A noteworthy difference between both modellings is about the size of the partitions

in the finite (homogeneous partitions) and infinite (extreme partitions) cases.

An interesting entry into the connections between “regular” mixture modelling and Dirichlet mixture models. Maybe not ultimately surprising given the past studies by Peter Green and Sylvia Richardson of both approaches (1997 in Series B and 2001 in JASA).

## Overfitting Bayesian mixture models with an unknown number of components

Posted in Statistics with tags component of a mixture, Czech Republic, Gibbs sampling, label switching, Luminy, mixture estimation, Peter Green, reversible jump, unknown number of components on March 4, 2015 by xi'an**D**uring my Czech vacations, Zoé van Havre, Nicole White, Judith Rousseau, and Kerrie Mengersen1 posted on arXiv a paper on overfitting mixture models to estimate the number of components. This is directly related with Judith and Kerrie’s 2011 paper and with Zoé’s PhD topic. The paper also returns to the vexing (?) issue of label switching! I very much like the paper and not only because the author are good friends!, but also because it brings a solution to an approach I briefly attempted with Marie-Anne Gruet in the early 1990’s, just before finding about the reversible jump MCMC algorithm of Peter Green at a workshop in Luminy and considering we were not going to “beat the competition”! Hence not publishing the output of our over-fitted Gibbs samplers that were nicely emptying extra components… It also brings a rebuke about a later assertion of mine’s at an ICMS workshop on mixtures, where I defended the notion that over-fitted mixtures could not be detected, a notion that was severely disputed by David McKay…

What is so fantastic in Rousseau and Mengersen (2011) is that a simple constraint on the Dirichlet prior on the mixture weights suffices to guarantee that asymptotically superfluous components will empty out and signal they are truly superfluous! The authors here cumulate the over-fitted mixture with a tempering strategy, which seems somewhat redundant, the number of extra components being a sort of temperature, but eliminates the need for fragile RJMCMC steps. Label switching is obviously even more of an issue with a larger number of components and identifying empty components seems to require a lack of label switching for some components to remain empty!

When reading through the paper, I came upon the condition that *only* the priors of the weights are allowed to vary between temperatures. Distinguishing the weights from the other parameters does make perfect sense, as some representations of a mixture work without those weights. Still I feel a bit uncertain about the fixed prior constraint, even though I can see the rationale in not allowing for complete freedom in picking those priors. More fundamentally, I am less and less happy with independent identical or exchangeable priors on the components.

Our own recent experience with almost zero weights mixtures (and with Judith, Kaniav, and Kerrie) suggests not using solely a Gibbs sampler there as it shows poor mixing. And even poorer label switching. The current paper does not seem to meet the same difficulties, maybe thanks to (prior) tempering.

The paper proposes a strategy called *Zswitch* to resolve label switching, which amounts to identify a MAP for each possible number of components and a subsequent relabelling. Even though I do not entirely understand the way the permutation is constructed. I wonder in particular at the cost of the relabelling.

## trans-dimensional nested sampling and a few planets

Posted in Books, Statistics, Travel, University life with tags birth-and-death process, Chamonix, exoplanet, label switching, métro, nested sampling, Paris, RER B, reversible jump, Université Paris Dauphine on March 2, 2015 by xi'an**T**his morning, in the train to Dauphine (train that was even more delayed than usual!), I read a recent arXival of Brendon Brewer and Courtney Donovan. Entitled Fast Bayesian inference for exoplanet discovery in radial velocity data, the paper suggests to associate Matthew Stephens’ (2000) birth-and-death MCMC approach with nested sampling to infer about the number N of exoplanets in an exoplanetary system. The paper is somewhat sparse in its description of the suggested approach, but states that the birth-date moves involves adding a planet with parameters simulated from the prior and removing a planet at random, both being accepted under a likelihood constraint associated with nested sampling. I actually wonder if this actually is the birth-date version of Peter Green’s (1995) RJMCMC rather than the continuous time birth-and-death process version of Matthew…

“The traditional approach to inferring N also contradicts fundamental ideas in Bayesian computation. Imagine we are trying to compute the posterior distribution for a parameter a in the presence of a nuisance parameter b. This is usually solved by exploring the joint posterior for a and b, and then only looking at the generated values of a. Nobody would suggest the wasteful alternative of using a discrete grid of possible a values and doing an entire Nested Sampling run for each, to get the marginal likelihood as a function of a.”

This criticism is receivable when there is a huge number of possible values of N, even though I see no fundamental contradiction with my ideas about Bayesian computation. However, it is more debatable when there are a few possible values for N, given that the exploration of the augmented space by a RJMCMC algorithm is often very inefficient, in particular when the proposed parameters are generated from the prior. The more when nested sampling is involved and simulations are run under the likelihood constraint! In the astronomy examples given in the paper, N never exceeds 15… Furthermore, by merging all N’s together, it is unclear how the evidences associated with the various values of N can be computed. At least, those are not reported in the paper.

The paper also omits to provide the likelihood function so I do not completely understand where “label switching” occurs therein. My first impression is that this is not a mixture model. However if the observed signal (from an exoplanetary system) is the sum of N signals corresponding to N planets, this makes more sense.

## using mixtures towards Bayes factor approximation

Posted in Statistics, Travel, University life with tags Bayes factors, Jean Diebolt, mixtures, Monte Carlo Statistical Methods, reversible jump, testing as mixture estimation, University of Nottingham on December 11, 2014 by xi'an**P**hil O’Neill and Theodore Kypraios from the University of Nottingham have arXived last week a paper on “Bayesian model choice via mixture distributions with application to epidemics and population process models”. Since we discussed this paper during my visit there earlier this year, I was definitely looking forward the completed version of their work. Especially because there are some superficial similarities with our most recent work on… Bayesian model choice via mixtures! (To the point that I misunderstood at the beginning their proposal for ours…)

The central idea in the paper is that, by considering the mixture likelihood

where * x* corresponds to the entire sample, it is straighforward to relate the moments of α with the Bayes factor, namely

which means that estimating the mixture weight α by MCMC is equivalent to estimating the Bayes factor.

What puzzled me at first was that the mixture weight is in fine estimated with a single “datapoint”, made of the entire sample. So the posterior distribution on α is hardly different from the prior, since it solely varies by one unit! But I came to realise that this is a numerical tool and that the estimator of α is not meaningful from a statistical viewpoint (thus differing completely from our perspective). This explains why the Beta prior on α can be freely chosen so that the mixing and stability of the Markov chain is improved: This parameter is solely an algorithmic entity.

There are similarities between this approach and the pseudo-prior encompassing perspective of Carlin and Chib (1995), even though the current version does not *require* pseudo-priors, using *true* priors instead. But thinking of weakly informative priors and of the MCMC consequence (see below) leads me to wonder if pseudo-priors would not help in this setting…

Another aspect of the paper that still puzzles me is that the MCMC algorithm mixes at all: indeed, depending on the value of the binary latent variable z, one of the two parameters is updated from the true posterior while the other is updated from the prior. It thus seems unlikely that the value of z would change quickly. Creating a huge imbalance in the prior can counteract this difference, but the same problem occurs once z has moved from 0 to 1 or from 1 to 0. It seems to me that resorting to a common parameter [if possible] and using as a proposal the model-based posteriors for both parameters is the only way out of this conundrum. (We do certainly insist on this common parametrisation in our approach as it is paramount to the use of improper priors.)

“In contrast, we consider the case where there is only one datum.”

The idea in the paper is therefore fully computational and relates to other linkage methods that create bridges between two models. It differs from our new notion of Bayesian testing in that we consider estimating the mixture between the two models in comparison, hence considering instead the mixture

which is another model altogether and does not recover the original Bayes factor (Bayes factor that we altogether dismiss in favour of the posterior median of α and its entire distribution).