Archive for RNG

certified RNGs

Posted in Statistics with tags , , , , , , , on April 27, 2020 by xi'an

A company called Gaming Laboratories International (GLI) is delivering certificates of randomness. Apparently using Marsaglia’s DieHard tests. Here are some unforgettable quotes from their webpage:

“…a Random Number Generator (RNG) is a key component that MUST be adequately and fully tested to ensure non-predictability and no biases exist towards certain game outcomes.”

“GLI has the most experienced and robust RNG testing methodologies in the world. This includes software-based (pseudo-algorithmic) RNG’s, Hardware RNG’s, and hybrid combinations of both.”

“GLI uses custom software written and validated through the collaborative effort of our in-house mathematicians and industry consultants since our inception in 1989. An RNG Test Suite is applied for randomness testing.”

“No lab in the world provides the level of iGaming RNG assurance that GLI does. Don’t take a chance with this most critical portion of your iGaming system.”

certified randomness, 187m away…

Posted in Statistics with tags , , , , , , , on May 3, 2018 by xi'an

As it rarely happens with Nature, I just read an article that directly relates to my research interests, about a secure physical random number generator (RNG). By Peter Bierhost and co-authors, mostly physicists apparently. Security here means that the outcome of the RNG is unpredictable. This very peculiar RNG is based on two correlated photons sent to two measuring stations, separated by at least 187m, which have to display unpredictable outcomes in order to respect the impossibility of faster-than-light communications, otherwise known as Bell inequalities. This is hardly practical though, especially when mentioning that the authors managed to produce 2¹⁰ random bits over 10 minutes, post processing “the measurement of 55 million photon pairs”. (I however fail to see why the two-arm apparatus would be needed for regular random generation as it seems relevant solely for the demonstration of randomness.) I also checked the associated supplementary material, which is mostly about proving some total variation bound, and constructing a Bell function. What is most puzzling in this paper (and the associated supplementary material) is the (apparent) lack of guarantee of uniformity of the RNG. For instance, a sentence (Supplementary Material, p.11) about  a distribution being “within TV distance of uniform” hints at the method being not provably uniform, which makes the whole exercise incomprehensible…