**D**eborah Mayo wrote a Saturday night special column on our Big Bayes stories issue in *Statistical Science*. She (predictably?) focussed on the critical discussions, esp. David Hand’s most forceful arguments where he essentially considers that, due to our (special issue editors’) selection of successful stories, we biased the debate by providing a “one-sided” story. And that we or the editor of *Statistical Science* should also have included frequentist stories. To which Deborah points out that demonstrating that “only” a frequentist solution is available may be beyond the possible. And still, I could think of partial information and partial inference problems like the “paradox” raised by Jamie Robbins and Larry Wasserman in the past years. (Not the normalising constant paradox but the one about censoring.) Anyway, the goal of this special issue was to provide a range of realistic illustrations where Bayesian analysis was a most reasonable approach, not to raise the Bayesian flag against other perspectives: in an ideal world it would have been more interesting to get discussants produce alternative analyses bypassing the Bayesian modelling but obviously discussants only have a limited amount of time to dedicate to their discussion(s) and the problems were complex enough to deter any attempt in this direction.

**A**s an aside and in explanation of the cryptic title of this post, Deborah wonders at my use of *endemic* in the preface and at the possible mis-translation from the French. I did mean *endemic* (and *endémique*) in a half-joking reference to a disease one cannot completely get rid of. At least in French, the term extends beyond diseases, but presumably *pervasive* would have been less confusing… Or *ubiquitous* (as in Ubiquitous Chip for those with Glaswegian ties!). She also expresses “surprise at the choice of name for the special issue. Incidentally, the “big” refers to the bigness of the problem, not big data. Not sure about “stories”.” Maybe another occurrence of lost in translation… I had indeed no intent of connection with the “big” of “Big Data”, but wanted to convey the notion of a big as in major problem. And of a story explaining why the problem was considered and how the authors reached a satisfactory analysis. The story of the Air France Rio-Paris crash resolution is representative of that intent. (Hence the explanation for the above picture.)