As I was teaching my introduction to Bayesian Statistics this morning, ending up with the chapter on tests of hypotheses, I found reflecting [out loud] on the relative nature of posterior quantities. Just like when I introduced the role of priors in Bayesian analysis the day before, I stressed the relativity of quantities coming out of the BBB [Big Bayesian Black Box], namely that whatever happens as a Bayesian procedure is to be understood, scaled, and relativised against the prior equivalent, i.e., that the reference measure or gauge is the prior. This is sort of obvious, clearly, but bringing the argument forward from the start avoids all sorts of misunderstanding and disagreement, in that it excludes the claims of absolute and certainty that may come with the production of a posterior distribution. It also removes the endless debate about the determination of the prior, by making each prior a reference on its own. With an additional possibility of calibration by simulation under the assumed model. Or an alternative. Again nothing new there, but I got rather excited by this presentation choice, as it seems to clarify the path to Bayesian modelling and avoid misapprehensions.
Further, the curious case of the Bayes factor (or of the posterior probability) could possibly be resolved most satisfactorily in this framework, as the [dreaded] dependence on the model prior probabilities then becomes a matter of relativity! Those posterior probabilities depend directly and almost linearly on the prior probabilities, but they should not be interpreted in an absolute sense as the ultimate and unique probability of the hypothesis (which anyway does not mean anything in terms of the observed experiment). In other words, this posterior probability does not need to be scaled against a U(0,1) distribution. Or against the p-value if anyone wishes to do so. By the end of the lecture, I was even wondering [not so loudly] whether or not this perspective was allowing for a resolution of the Lindley-Jeffreys paradox, as the resulting number could be set relative to the choice of the [arbitrary] normalising constant. Continue reading →