Archive for Saint Giles cemetery

Jeffreys priors for hypothesis testing [Bayesian reads #2]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , on February 9, 2019 by xi'an

A second (re)visit to a reference paper I gave to my OxWaSP students for the last round of this CDT joint program. Indeed, this may be my first complete read of Susie Bayarri and Gonzalo Garcia-Donato 2008 Series B paper, inspired by Jeffreys’, Zellner’s and Siow’s proposals in the Normal case. (Disclaimer: I was not the JRSS B editor for this paper.) Which I saw as a talk at the O’Bayes 2009 meeting in Phillie.

The paper aims at constructing formal rules for objective proper priors in testing embedded hypotheses, in the spirit of Jeffreys’ Theory of Probability “hidden gem” (Chapter 3). The proposal is based on symmetrised versions of the Kullback-Leibler divergence κ between null and alternative used in a transform like an inverse power of 1+κ. With a power large enough to make the prior proper. Eventually multiplied by a reference measure (i.e., the arbitrary choice of a dominating measure.) Can be generalised to any intrinsic loss (not to be confused with an intrinsic prior à la Berger and Pericchi!). Approximately Cauchy or Student’s t by a Taylor expansion. To be compared with Jeffreys’ original prior equal to the derivative of the atan transform of the root divergence (!). A delicate calibration by an effective sample size, lacking a general definition.

At the start the authors rightly insist on having the nuisance parameter v to differ for each model but… as we all often do they relapse back to having the “same ν” in both models for integrability reasons. Nuisance parameters make the definition of the divergence prior somewhat harder. Or somewhat arbitrary. Indeed, as in reference prior settings, the authors work first conditional on the nuisance then use a prior on ν that may be improper by the “same” argument. (Although conditioning is not the proper term if the marginal prior on ν is improper.)

The paper also contains an interesting case of the translated Exponential, where the prior is L¹ Student’s t with 2 degrees of freedom. And another one of mixture models albeit in the simple case of a location parameter on one component only.

relativity is the keyword

Posted in Books, Statistics, University life with tags , , , , , , , on February 1, 2017 by xi'an

St John's College, Oxford, Feb. 23, 2012As I was teaching my introduction to Bayesian Statistics this morning, ending up with the chapter on tests of hypotheses, I found reflecting [out loud] on the relative nature of posterior quantities. Just like when I introduced the role of priors in Bayesian analysis the day before, I stressed the relativity of quantities coming out of the BBB [Big Bayesian Black Box], namely that whatever happens as a Bayesian procedure is to be understood, scaled, and relativised against the prior equivalent, i.e., that the reference measure or gauge is the prior. This is sort of obvious, clearly, but bringing the argument forward from the start avoids all sorts of misunderstanding and disagreement, in that it excludes the claims of absolute and certainty that may come with the production of a posterior distribution. It also removes the endless debate about the determination of the prior, by making each prior a reference on its own. With an additional possibility of calibration by simulation under the assumed model. Or an alternative. Again nothing new there, but I got rather excited by this presentation choice, as it seems to clarify the path to Bayesian modelling and avoid misapprehensions.

Further, the curious case of the Bayes factor (or of the posterior probability) could possibly be resolved most satisfactorily in this framework, as the [dreaded] dependence on the model prior probabilities then becomes a matter of relativity! Those posterior probabilities depend directly and almost linearly on the prior probabilities, but they should not be interpreted in an absolute sense as the ultimate and unique probability of the hypothesis (which anyway does not mean anything in terms of the observed experiment). In other words, this posterior probability does not need to be scaled against a U(0,1) distribution. Or against the p-value if anyone wishes to do so. By the end of the lecture, I was even wondering [not so loudly] whether or not this perspective was allowing for a resolution of the Lindley-Jeffreys paradox, as the resulting number could be set relative to the choice of the [arbitrary] normalising constant. Continue reading

comments on Watson and Holmes

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , on April 1, 2016 by xi'an

“The world is full of obvious things which nobody by any chance ever observes.” The Hound of the Baskervilles

In connection with the incoming publication of James Watson’s and Chris Holmes’ Approximating models and robust decisions in Statistical Science, Judith Rousseau and I wrote a discussion on the paper that has been arXived yesterday.

“Overall, we consider that the calibration of the Kullback-Leibler divergence remains an open problem.” (p.18)

While the paper connects with earlier ones by Chris and coauthors, and possibly despite the overall critical tone of the comments!, I really appreciate the renewed interest in robustness advocated in this paper. I was going to write Bayesian robustness but to differ from the perspective adopted in the 90’s where robustness was mostly about the prior, I would say this is rather a Bayesian approach to model robustness from a decisional perspective. With definitive innovations like considering the impact of posterior uncertainty over the decision space, uncertainty being defined e.g. in terms of Kullback-Leibler neighbourhoods. Or with a Dirichlet process distribution on the posterior. This may step out of the standard Bayesian approach but it remains of definite interest! (And note that this discussion of ours [reluctantly!] refrained from capitalising on the names of the authors to build easy puns linked with the most Bayesian of all detectives!)