Archive for scalable MCMC

distributed posteriors

Posted in Books, Statistics, Travel, University life with tags , , , , , , , on February 27, 2019 by xi'an

Another presentation by our OxWaSP students introduced me to the notion of distributed posteriors, following a 2018 paper by Botond Szabó and Harry van Zanten. Which corresponds to the construction of posteriors when conducting a divide & conquer strategy. The authors show that an adaptation of the prior to the division of the sample is necessary to recover the (minimax) convergence rate obtained in the non-distributed case. This is somewhat annoying, except that the adaptation amounts to take the original prior to the power 1/m, when m is the number of divisions. They further show that when the regularity (parameter) of the model is unknown, the optimal rate cannot be recovered unless stronger assumptions are made on the non-zero parameters of the model.

“First of all, we show that depending on the communication budget, it might be advantageous to group local machines and let different groups work on different aspects of the high-dimensional object of interest. Secondly, we show that it is possible to have adaptation in communication restricted distributed settings, i.e. to have data-driven tuning that automatically achieves the correct bias-variance trade-off.”

I find the paper of considerable interest for scalable MCMC methods, even though the setting may happen to sound too formal, because the study incorporates parallel computing constraints. (Although I did not investigate the more theoretical aspects of the paper.)

scalable Metropolis-Hastings

Posted in Statistics, Books, Travel with tags , , , , , , , , , on February 12, 2019 by xi'an

Among the flury of arXived papers of last week (414!), including a fair chunk of papers submitted to ICML 2019, I spotted one entry by Cornish et al. on scalable Metropolis-Hastings, which Arnaud Doucet had mentioned to me yesterday when in Oxford. The paper builds on the delayed acceptance paper we wrote with Marco Banterlé, Clara Grazian and Anthony Lee, itself relying on a factorisation decomposition of the likelihood, combined with control variate accelerating techniques. The factorisation of both the target and the proposal allows for a (less efficient) Metropolis-Hastings acceptance ratio that is the product

\prod_{i=1}^m \alpha_i(\theta,\theta')

of individual Metropolis-Hastings acceptance ratios, but which allows for quicker rejection if one of the probabilities in the product is small, because the corresponding Bernoulli draw is zero with high probability. One advance made in Michel et al. (2017) [which I doubly missed] is that subsampling is achievable by thinning (as in PDMPs, where these authors have been quite active) through an algorithm of Shantikumar (1985) [described in Devroye’s bible]. Provided each Metropolis-Hastings probability can be lower bounded:

\alpha_i(\theta,\theta') \ge \exp\{-\psi_i \phi(\theta,\theta')\}

by a term where the transition φ does not depend on the index i in the product. The computing cost of the thinning process thus depends on the efficiency of the subsampling, namely whether or not the (Poisson) number of terms is much smaller than m, number of terms in the product. A neat trick in the current paper that extends the the Fukui-Todo procedure is to switch to the original Metropolis-Hastings when the overall lower bound is too small, recovering the geometric ergodicity of this original if it holds (Theorem 2.1). Another neat remark is that when using the naïve factorisation as the product of the n individual likelihoods, the resulting algorithm is sort of doomed as n grows, even with an optimal scaling of the proposals. To achieve scalability, the authors introduce a Taylor (i.e., Gaussian) approximation to each local target in the product and start the acceptance decomposition by using the resulting overall Gaussian approximation. Meaning that the remaining product is now made of ratios of targets over their local Taylor approximations, hence most likely close to one. And potentially lower-bounded by the remainder term in the Taylor expansion. Leading to the conclusion that, when everything goes well, meaning that the Taylor expansions can be conducted and the bounds derived for the appropriate expansion, the order of the Poisson scale is O(1/√n)..! The proposal for the Metropolis-Hastings move is actually tuned to the Gaussian approximation, appearing as a variant of the Langevin move or more exactly a discretization of an Hamiltonian move. Obviously, I cannot judge of the complexity in implementing this new scheme from just reading the paper, but this development on the split target is definitely an exciting prospect for handling huge datasets and their friends!

Monte Carlo fusion

Posted in Statistics with tags , , , , , , , , , on January 18, 2019 by xi'an

Hongsheng Dai, Murray Pollock (University of Warwick), and Gareth Roberts (University of Warwick) just arXived a paper we discussed together last year while I was at Warwick. Where fusion means bringing different parts of the target distribution

f(x)∝f¹(x)f²(x)…

together, once simulation from each part has been done. In the same spirit as in Scott et al. (2016) consensus Monte Carlo. Where for instance the components of the target cannot be computed simultaneously, either because of the size of the dataset, or because of privacy issues.The idea in this paper is to target an augmented density with the above marginal, using for each component of f, an auxiliary variable x¹,x²,…, and a target that is the product of the squared component, f¹(x¹)², f²(x²)², … by a transition density keeping f¹(.)²,f²(.)²,… invariant:

f^c(x^c)^2 p_c(y|x^c) / f_c(y)

as for instance the transition density of a Langevin diffusion. The marginal of

\prod_c f^c(x^c)^2 p_c(y|x^c) / f_c(y)

as a function of y is then the targeted original product. Simulating from this new extended target can be achieved by rejection sampling. (Any impact of the number of auxiliary variables on the convergence?) The practical implementation actually implies using the path-space rejection sampling methods in the Read Paper of Beskos et al. (2006). (An extreme case of the algorithm is actually an (exact) ABC version where the simulations x¹,x²,… from all components have to be identical and equal to y. The opposite extreme is the consensus Monte Carlo Algorithm, which explains why this algorithm is not an efficient solution.) An alternative is based on an Ornstein-Uhlenbeck bridge. While the paper remains at a theoretical level with toy examples, I heard from the same sources that applications to more realistic problems and implementation on parallel processors is under way.

Langevin on a wrong bend

Posted in Books, Statistics with tags , , , , , , , on October 19, 2017 by xi'an

Arnak Dalayan and Avetik Karagulyan (CREST) arXived a paper the other week on a focussed study of the Langevin algorithm [not MALA] when the gradient of the target is incorrect. With the following improvements [quoting non-verbatim from the paper]:

  1. a varying-step Langevin that reduces the number of iterations for a given Wasserstein precision, compared with recent results by e.g. Alan Durmus and Éric Moulines;
  2. an extension of convergence results for error-prone evaluations of the gradient of the target (i.e., the gradient is replaced with a noisy version, under some moment assumptions that do not include unbiasedness);
  3. a new second-order sampling algorithm termed LMCO’, with improved convergence properties.

What is particularly interesting to me in this setting is the use in all these papers of a discretised Langevin diffusion (a.k.a., random walk with a drift induced by the gradient of the log-target) without the original Metropolis correction. The results rely on an assumption of [strong?] log-concavity of the target, with “user-friendly” bounds on the Wasserstein distance depending on the constants appearing in this log-concavity constraint. And so does the adaptive step. (In the case of the noisy version, the bias and variance of the noise also matter. As pointed out by the authors, there is still applicability to scaling MCMC for large samples. Beyond pseudo-marginal situations.)

“…this, at first sight very disappointing behavior of the LMC algorithm is, in fact, continuously connected to the exponential convergence of the gradient descent.”

The paper concludes with an interesting mise en parallèle of Langevin algorithms and of gradient descent algorithms, since the convergence rates are the same.

at the Isaac Newton Institute

Posted in Statistics, Travel, University life with tags , , , , , on July 6, 2017 by xi'an

the invasion of the stochastic gradients

Posted in Statistics with tags , , , , , , , , , on May 10, 2017 by xi'an

Within the same day, I spotted three submissions to arXiv involving stochastic gradient descent, that I briefly browsed on my trip back from Wales:

  1. Stochastic Gradient Descent as Approximate Bayesian inference, by Mandt, Hoffman, and Blei, where this technique is used as a type of variational Bayes method, where the minimum Kullback-Leibler distance to the true posterior can be achieved. Rephrasing the [scalable] MCMC algorithm of Welling and Teh (2011) as such an approximation.
  2. Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent, by Arnak Dalalyan, which establishes a convergence of the uncorrected Langevin algorithm to the right target distribution in the sense of the Wasserstein distance. (Uncorrected in the sense that there is no Metropolis step, meaning this is a Euler approximation.) With an extension to the noisy version, when the gradient is approximated eg by subsampling. The connection with stochastic gradient descent is thus tenuous, but Arnak explains the somewhat disappointing rate of convergence as being in agreement with optimisation rates.
  3. Stein variational adaptive importance sampling, by Jun Han and Qiang Liu, which relates to our population Monte Carlo algorithm, but as a non-parametric version, using RKHS to represent the transforms of the particles at each iteration. The sampling method follows two threads of particles, one that is used to estimate the transform by a stochastic gradient update, and another one that is used for estimation purposes as in a regular population Monte Carlo approach. Deconstructing into those threads allows for conditional independence that makes convergence easier to establish. (A problem we also hit when working on the AMIS algorithm.)

scalable Langevin exact algorithm

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , on October 18, 2016 by xi'an

“By employing a modification to existing naïve subsampling techniques we can obtain an algorithm which is still exact but has sub-linear iterative cost as a function of data size.”

A few weeks ago Murray Pollock, Paul Fearnhead, Adam Johansen and Gareth Roberts (all from Warwick except for Paul) arXived a paper The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data. (This was also the topic of Murray’s talk last year at JSM in Seattle.) One major advance found in the paper is the derivation of an “exact” algorithm that is sub-linear in the data size. As discussed in the introduction, the current approaches to large data problems either suffer from being approximate (like divide-and-conquer methods) or do not achieve significant reduction in the computing time, being of order O(n). The authors mention Teh and Welling (2011) sand their tochastic gradient approximation to the Langevin diffusion, when the gradient is based on a subsample. Without the Metropolis correction that would ensure an exact target but at a cost of order O(n). (Which makes the technique rather difficult to recommend.)

A novel [for me] notion at the core of this paper is the concept of quasi-stationary distribution, which is the limiting distribution of a Markov chain X[t] conditional on a Markov stopping time [being larger than t]. The approach is based on diffusions with appropriate stationary distributions like the Langevin diffusion. (Actually, as in most papers I have read and remember, the current paper only considers the Langevin diffusion.) In order to avoid the issues with unadjusted and Metropolis-adjusted Langevin schemes, a killed Brownian motion is created, which means a Brownian motion conditional of being alive till time T when the instantaneous killing rate is a given function of the chain, Φ(X[t]), related with the stationary measure of the Langevin diffusion ν. Under appropriate conditions, the density of this killed Brownian motion converges [in T] to √ν. Which immediately hints at creating a new Langevin diffusion targeting ν² instead of ν. And killing it with the proper rate, which can be done by thinning a Poisson process. Simulating the original path can be done by path-space rejection sampling, following the technique set by Gareth Roberts and co-authors more than ten years ago. Based on finite dimensional realisations of the path on [0,T]. And including the killing part can be done by importance sampling and checking that the simulated killing time is larger than the current (exponentially simulated) time.

One practical difficulty in the implementation of this neat principle is the derivation of the normalising constant, which evaluation degrades with the time horizon T. The solution adopted in the paper is through a sequential Monte Carlo method, using another discretisation of the time interval [0,T] (relying on the original one would get too costly?). As for subsampling, since the survival probability for the Brownian motion is based on an unbiased estimator, subsampling does not hurt if conducted in a random manner. Although this increases the variance on principle, the use of a control variate computed just once helps in reducing the complexity to O(1).

This is a tough paper and I have not gone through the effort of trying to implement it, but this is an original and innovative construct I would like to monitor in further details on a toy example, maybe next week while in Warwick. Or at least to discuss it with the authors.