## Archive for scientific inference

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , on December 5, 2017 by xi'an

I am a PhD student in biostatistics, and an avid reader of your work. I recently came across this blog post, where you review a text on statistical paradoxes, and I was struck by this section:

“For instance, the author considers the MLE being biased to be a paradox (p.117), while omitting the much more substantial “paradox” of the non-existence of unbiased estimators of most parameters—which simply means unbiasedness is irrelevant. Or the other even more puzzling “paradox” that the secondary MLE derived from the likelihood associated with the distribution of a primary MLE may differ from the primary. (My favourite!)”

I found this section provocative, but I am unclear on the nature of these “paradoxes”. I reviewed my stat inference notes and came across the classic example that there is no unbiased estimator for 1/p w.r.t. a binomial distribution, but I believe you are getting at a much more general result. If it’s not too much trouble, I would sincerely appreciate it if you could point me in the direction of a reference or provide a bit more detail for these two “paradoxes”.

The text is Chang’s Paradoxes in Scientific Inference, which I indeed reviewed negatively. To answer about the bias “paradox”, it is indeed a neglected fact that, while the average of any transform of a sample obviously is an unbiased estimator of its mean (!), the converse does not hold, namely, an arbitrary transform of the model parameter θ is not necessarily enjoying an unbiased estimator. In Lehmann and Casella, Chapter 2, Section 4, this issue is (just slightly) discussed. But essentially, transforms that lead to unbiased estimators are mostly the polynomial transforms of the mean parameters… (This also somewhat connects to a recent X validated question as to why MLEs are not always unbiased. Although the simplest explanation is that the transform of the MLE is the MLE of the transform!) In exponential families, I would deem the range of transforms with unbiased estimators closely related to the collection of functions that allow for inverse Laplace transforms, although I cannot quote a specific result on this hunch.

The other “paradox” is that, if h(X) is the MLE of the model parameter θ for the observable X, the distribution of h(X) has a density different from the density of X and, hence, its maximisation in the parameter θ may differ. An example (my favourite!) is the MLE of ||a||² based on x N(a,I) which is ||x||², a poor estimate, and which (strongly) differs from the MLE of ||a||² based on ||x||², which is close to (1-p/||x||²)²||x||² and (nearly) admissible [as discussed in the Bayesian Choice].

## on the origin of the Bayes factor

Posted in Books, Statistics with tags , , , , , , , on November 27, 2015 by xi'an

Alexander Etz and Eric-Jan Wagenmakers from the Department of Psychology of the University of Amsterdam just arXived a paper on the invention of the Bayes factor. In particular, they highlight the role of John Burdon Sanderson (J.B.S.) Haldane in the use of the central tool for Bayesian comparison of hypotheses. In short, Haldane used a Bayes factor before Jeffreys did!

“The idea of a significance test, I suppose, putting half the probability into a constant being 0, and distributing the other half over a range of possible values.”H. Jeffreys

The authors analyse Jeffreys’ 1935 paper on significance tests, which appears to be the very first occurrence of a Bayes factor in his bibliography, testing whether or not two probabilities are equal. They also show the roots of this derivation in earlier papers by Dorothy Wrinch and Harold Jeffreys. [As an “aside”, the early contributions of Dorothy Wrinch to the foundations of 20th Century Bayesian statistics are hardly acknowledged. A shame, when considering they constitute the basis and more of Jeffreys’ 1931 Scientific Inference, Jeffreys who wrote in her necrology “I should like to put on record my appreciation of the substantial contribution she made to [our joint] work, which is the basis of all my later work on scientific inference.” In retrospect, Dorothy Wrinch should have been co-author to this book…] As early as 1919. These early papers by Wrinch and Jeffreys are foundational in that they elaborate a construction of prior distributions that will eventually see the Jeffreys non-informative prior as its final solution [Jeffreys priors that should be called Lhostes priors according to Steve Fienberg, although I think Ernest Lhoste only considered a limited number of transformations in his invariance rule]. The 1921 paper contains de facto the Bayes factor but it does not appear to be advocated as a tool per se for conducting significance tests.

“The historical records suggest that Haldane calculated the first Bayes factor, perhaps almost by accident, before Jeffreys did.” A. Etz and E.J. Wagenmakers

As another interesting aside, the historical account points out that Jeffreys came out in 1931 with what is now called Haldane’s prior for a Binomial proportion, proposed in 1931 (when the paper was read) and in 1932 (when the paper was published in the Mathematical Proceedings of the Cambridge Philosophical Society) by Haldane. The problem tackled by Haldane is again a significance on a Binomial probability. Contrary to the authors, I find the original (quoted) text quite clear, with a prior split before a uniform on [0,½] and a point mass at ½. Haldane uses a posterior odd [of 34.7] to compare both hypotheses but… I see no trace in the quoted material that he ends up using the Bayes factor as such, that is as his decision rule. (I acknowledge decision rule is anachronistic in this setting.) On the side, Haldane also implements model averaging. Hence my reading of this reading of the 1930’s literature is that it remains unclear that Haldane perceived the Bayes factor as a Bayesian [another anachronism] inference tool, upon which [and only which] significance tests could be conducted. That Haldane had a remarkably modern view of splitting the prior according to two orthogonal measures and of correctly deriving the posterior odds is quite clear. With the very neat trick of removing the infinite integral at p=0, an issue that Jeffreys was fighting with at the same time. In conclusion, I would thus rephrase the major finding of this paper as Haldane should get the priority in deriving the Bayesian significance test for point null hypotheses, rather than in deriving the Bayes factor. But this may be my biased views of Bayes factors speaking there…

Another amazing fact I gathered from the historical work of Etz and Wagenmakers is that Haldane and Jeffreys were geographically very close while working on the same problem and hence should have known and referenced their respective works. Which did not happen.

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on November 23, 2012 by xi'an

This CRC Press book was sent to me for review in CHANCE: Paradoxes in Scientific Inference is written by Mark Chang, vice-president of AMAG Pharmaceuticals. The topic of scientific paradoxes is one of my primary interests and I have learned a lot by looking at Lindley-Jeffreys and Savage-Dickey paradoxes. However, I did not find a renewed sense of excitement when reading the book. The very first (and maybe the best!) paradox with Paradoxes in Scientific Inference is that it is a book from the future! Indeed, its copyright year is 2013 (!), although I got it a few months ago. (Not mentioning here the cover mimicking Escher’s “paradoxical” pictures with dices. A sculpture due to Shigeo Fukuda and apparently not quoted in the book. As I do not want to get into another dice cover polemic, I will abstain from further comments!)

Now, getting into a deeper level of criticism (!), I find the book very uneven and overall quite disappointing. (Even missing in its statistical foundations.) Esp. given my initial level of excitement about the topic!