Archive for Seattle

riddle on a circle

Posted in Books, Kids, R, Travel with tags , , , , , , , on December 22, 2019 by xi'an

The Riddler’s riddle this week provides another opportunity to resort to brute-force simulated annealing!

Given a Markov chain defined on the torus {1,2,…,100} with only moves a drift to the right (modulo 100) and a uniformely random jump, find the optimal transition matrix to reach 42 in a minimum (average) number of moves.

Which I coded in my plane to Seattle, under the assumption that there is nothing to do when the chain is already in 42. And the reasoning that there is not gain (on average) in keeping the choice between right shift and random jump random.

dure=min(c(41:0,99:42),50)
temp=.01
for (t in 1:1e6){
  i=sample((1:100)[-42],1)
  dura=1+mean(dure)
  if (temp*log(runif(1))<dure[i]-dura) dure[i]=dura
  if(temp*log(runif(1))<dure[i]-(dura<-1+dure[i*(i<100)+1])) 
    dure[i]=dura 
  temp=temp/(1+.1e-4*(runif(1)>.99))}

In all instances, the solution is to move at random for any position but those between 29 and 41, for an average 13.64286 number of steps to reach 42. (For values outside the range 29-42.)

ABC-SAEM

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on October 8, 2019 by xi'an

In connection with the recent PhD thesis defence of Juliette Chevallier, in which I took a somewhat virtual part for being physically in Warwick, I read a paper she wrote with Stéphanie Allassonnière on stochastic approximation versions of the EM algorithm. Computing the MAP estimator can be done via some adapted for simulated annealing versions of EM, possibly using MCMC as for instance in the Monolix software and its MCMC-SAEM algorithm. Where SA stands sometimes for stochastic approximation and sometimes for simulated annealing, originally developed by Gilles Celeux and Jean Diebolt, then reframed by Marc Lavielle and Eric Moulines [friends and coauthors]. With an MCMC step because the simulation of the latent variables involves an untractable normalising constant. (Contrary to this paper, Umberto Picchini and Adeline Samson proposed in 2015 a genuine ABC version of this approach, paper that I thought I missed—although I now remember discussing it with Adeline at JSM in Seattle—, ABC is used as a substitute for the conditional distribution of the latent variables given data and parameter. To be used as a substitute for the Q step of the (SA)EM algorithm. One more approximation step and one more simulation step and we would reach a form of ABC-Gibbs!) In this version, there are very few assumptions made on the approximation sequence, except that it converges with the iteration index to the true distribution (for a fixed observed sample) if convergence of ABC-SAEM is to happen. The paper takes as an illustrative sequence a collection of tempered versions of the true conditionals, but this is quite formal as I cannot fathom a feasible simulation from the tempered version and not from the untempered one. It is thus much more a version of tempered SAEM than truly connected with ABC (although a genuine ABC-EM version could be envisioned).

Mount Baker in the sky [jatp]

Posted in Mountains, pictures, Travel with tags , , , , , , , , , on September 23, 2018 by xi'an

a Bayesian interpretation of FDRs?

Posted in Statistics with tags , , , , , , , , , , on April 12, 2018 by xi'an

This week, I happened to re-read John Storey’ 2003 “The positive discovery rate: a Bayesian interpretation and the q-value”, because I wanted to check a connection with our testing by mixture [still in limbo] paper. I however failed to find what I was looking for because I could not find any Bayesian flavour in the paper apart from an FRD expressed as a “posterior probability” of the null, in the sense that the setting was one of opposing two simple hypotheses. When there is an unknown parameter common to the multiple hypotheses being tested, a prior distribution on the parameter makes these multiple hypotheses connected. What makes the connection puzzling is the assumption that the observed statistics defining the significance region are independent (Theorem 1). And it seems to depend on the choice of the significance region, which should be induced by the Bayesian modelling, not the opposite. (This alternative explanation does not help either, maybe because it is on baseball… Or maybe because the sentence “If a player’s [posterior mean] is above .3, it’s more likely than not that their true average is as well” does not seem to appear naturally from a Bayesian formulation.) [Disclaimer: I am not hinting at anything wrong or objectionable in Storey’s paper, just being puzzled by the Bayesian tag!]

scalable Langevin exact algorithm

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , on October 18, 2016 by xi'an

“By employing a modification to existing naïve subsampling techniques we can obtain an algorithm which is still exact but has sub-linear iterative cost as a function of data size.”

A few weeks ago Murray Pollock, Paul Fearnhead, Adam Johansen and Gareth Roberts (all from Warwick except for Paul) arXived a paper The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data. (This was also the topic of Murray’s talk last year at JSM in Seattle.) One major advance found in the paper is the derivation of an “exact” algorithm that is sub-linear in the data size. As discussed in the introduction, the current approaches to large data problems either suffer from being approximate (like divide-and-conquer methods) or do not achieve significant reduction in the computing time, being of order O(n). The authors mention Teh and Welling (2011) sand their tochastic gradient approximation to the Langevin diffusion, when the gradient is based on a subsample. Without the Metropolis correction that would ensure an exact target but at a cost of order O(n). (Which makes the technique rather difficult to recommend.)

A novel [for me] notion at the core of this paper is the concept of quasi-stationary distribution, which is the limiting distribution of a Markov chain X[t] conditional on a Markov stopping time [being larger than t]. The approach is based on diffusions with appropriate stationary distributions like the Langevin diffusion. (Actually, as in most papers I have read and remember, the current paper only considers the Langevin diffusion.) In order to avoid the issues with unadjusted and Metropolis-adjusted Langevin schemes, a killed Brownian motion is created, which means a Brownian motion conditional of being alive till time T when the instantaneous killing rate is a given function of the chain, Φ(X[t]), related with the stationary measure of the Langevin diffusion ν. Under appropriate conditions, the density of this killed Brownian motion converges [in T] to √ν. Which immediately hints at creating a new Langevin diffusion targeting ν² instead of ν. And killing it with the proper rate, which can be done by thinning a Poisson process. Simulating the original path can be done by path-space rejection sampling, following the technique set by Gareth Roberts and co-authors more than ten years ago. Based on finite dimensional realisations of the path on [0,T]. And including the killing part can be done by importance sampling and checking that the simulated killing time is larger than the current (exponentially simulated) time.

One practical difficulty in the implementation of this neat principle is the derivation of the normalising constant, which evaluation degrades with the time horizon T. The solution adopted in the paper is through a sequential Monte Carlo method, using another discretisation of the time interval [0,T] (relying on the original one would get too costly?). As for subsampling, since the survival probability for the Brownian motion is based on an unbiased estimator, subsampling does not hurt if conducted in a random manner. Although this increases the variance on principle, the use of a control variate computed just once helps in reducing the complexity to O(1).

This is a tough paper and I have not gone through the effort of trying to implement it, but this is an original and innovative construct I would like to monitor in further details on a toy example, maybe next week while in Warwick. Or at least to discuss it with the authors.

photography exhibit in Seattle

Posted in Mountains, pictures, Running, Travel with tags , , , , , , , , on October 4, 2016 by xi'an

For readers in the Seattle vicinity, just mentioning that a friend and climbing guide, Brittany Aäe, is holding a photograph exhibit at Caffe Vita, 4301 Fremont Avenue North, in Seattle, this month. Enjoy.

Cadence

Posted in pictures, Travel, Wines with tags , , , , , , , on December 20, 2015 by xi'an

"another local red wine with a strong personality, Seattle, Aug. 10, 2015""more details...