**M**y PhD student Clara Grazian just arXived this joint work with Brunero Liseo on using ABC for marginal density estimation. The idea in this paper is to produce an integrated likelihood approximation in intractable problems via the ratio

both terms in the ratio being estimated from simulations,

(with possible closed form for the denominator). Although most of the examples processed in the paper (Poisson means ratio, Neyman-Scott’s problem, g-&-k quantile distribution, semi-parametric regression) rely on summary statistics, hence *de facto* replacing the numerator above with a pseudo-posterior conditional on those summaries, the approximation remains accurate (for those examples). In the g-&-k quantile example, Clara and Brunero compare our ABC-MCMC algorithm with the one of Allingham et al. (2009, Statistics & Computing): the later does better by not replicating values in the Markov chain but instead proposing a new value until it is accepted by the usual Metropolis step. (Although I did not spend much time on this issue, I cannot see how both approaches could be simultaneously correct. Even though the outcomes do not look very different.) As noted by the authors, “the main drawback of the present approach is that it requires the use of proper priors”, unless the marginalisation of the prior can be done analytically. (This is an interesting computational problem: how to provide an efficient approximation to a marginal density of a σ-finite measure, assuming this density exists.)

*Clara will give a talk at CREST-ENSAE today about this work, in the Bayes in Paris seminar: 2pm in room 18.*