**N**ext week, Rémi Bardenet is giving a seminar in Paris, Thursday April 14, 2pm, in ENSAE [room 15] on MCMC methods for tall data. Unfortunately, I will miss this opportunity to discuss with Rémi as I will be heading to La Sapienza, Roma, for Clara Grazian‘s PhD defence the next day. And on Monday afternoon, April 11, Nicolas Chopin will give a talk on quasi-Monte Carlo for sequential problems at Institut Henri Poincaré.

## Archive for seminar

## Rémi Bardenet’s seminar

Posted in Kids, pictures, Statistics, Travel, University life with tags ABC in Roma, big data, BiPS, CREST, defense, ENSAE, Institut Henri Poincaré, MCMC algorithms, Monte Carlo Statistical Methods, Nicolas Chopin, PhD thesis, quasi-Monte Carlo methods, seminar, tall data on April 7, 2016 by xi'an## It’s the selection’s fault not the p-values’… [seminar]

Posted in pictures, Statistics, University life with tags Benjamini, false discovery rate, Jussieu, p-values, replication crisis, seminar, Université Pierre et Marie Curie on February 5, 2016 by xi'anYoav Benjamini will give a seminar talk in Paris next Monday on the above (full title: “*The replicability crisis in science: It’s the selection’s fault not the p-values’*“). (That I will miss for being in Warwick at the time.) With a fairly terse abstract:

I shall discuss the problem of lack of replicability of results in science, and point at selective inference as a statistical root cause. I shall then present a few strategies for addressing selective inference, and their application in genomics, brain research and earlier phases of clinical trials where both primary and secondary endpoints are being used.

**Details:** February 8, 2016, 16h, Université Pierre & Marie Curie, campus Jussieu, salle 15-16-101.

## read paper [in Bristol]

Posted in Books, pictures, Statistics, Travel, University life with tags Bayes factors, Bayesian hypothesis testing, Bayesian model choice, Bristol, cake, England, improper priors, mixtures of distributions, Neyman-Pearson, non-informative priors, parametrisation, Pima Indians, Read paper, seminar, University of Bristol on January 29, 2016 by xi'an**I** went to give a seminar in Bristol last Friday and I chose to present the testing with mixture paper. As we are busy working on the revision, I was eagerly looking for comments and criticisms that could strengthen this new version. As it happened, the (Bristol) Bayesian Cake (Reading) Club had chosen our paper for discussion, two weeks in a row!, hence the title!, and I got invited to join the group the morning prior to the seminar! This was, of course, most enjoyable and relaxed, including an home-made cake!, but also quite helpful in assessing our arguments in the paper. One point of contention or at least of discussion was the common parametrisation between the components of the mixture. Although all parametrisations are equivalent from a *single* component point of view, I can [almost] see why using a mixture with the same parameter value on all components may impose some unsuspected constraint on that parameter. Even when the parameter is *the same moment* for both components. This still sounds like a minor counterpoint in that the weight should converge to either zero or one and hence eventually favour the posterior on the parameter corresponding to the “true” model.

Another point that was raised during the discussion is the behaviour of the method under misspecification or for an M-open framework: when neither model is correct does the weight still converge to the boundary associated with the closest model (as I believe) or does a convexity argument produce a non-zero weight as it limit (as hinted by one example in the paper)? I had thought very little about this and hence had just as little to argue though as this does not sound to me like the primary reason for conducting tests. Especially in a Bayesian framework. If one is uncertain about both models to be compared, one should have an alternative at the ready! Or use a non-parametric version, which is a direction we need to explore deeper before deciding it is coherent and convergent!

A third point of discussion was my argument that mixtures allow us to rely on the same parameter and hence the same prior, whether proper or not, while Bayes factors are less clearly open to this interpretation. This was not uniformly accepted!

Thinking afresh about this approach also led me to broaden my perspective on the use of the posterior distribution of the weight(s) α: while previously I had taken those weights mostly as a proxy to the posterior probabilities, to be calibrated by pseudo-data experiments, as for instance in Figure 9, I now perceive them primarily as the portion of the data in agreement with the corresponding model [or hypothesis] and more importantly as a solution for staying away from a Neyman-Pearson-like decision. Or error evaluation. Usually, when asked about the interpretation of the output, my answer is to compare the behaviour of the posterior on the weight(s) with a posterior associated with a sample from each model. Which does sound somewhat similar to posterior predictives if the samples are simulated from the associated predictives. But the issue was not raised during the visit to Bristol, which possibly reflects on how unfrequentist the audience was [the Statistics group is], as it apparently accepted with no further ado the use of a posterior distribution as a soft assessment of the comparative fits of the different models. If not necessarily agreeing the need of conducting hypothesis testing (especially in the case of the Pima Indian dataset!).

## reading classics (#1,2)

Posted in Books, Kids, Statistics, University life with tags Bernoulli distribution, classics, invariance, non-informative priors, Pitman, seminar, Université Paris Dauphine on December 4, 2014 by xi'an**T**oday was the second session of our Reading Classics Seminar for the academic year 2014-2015. I have not reported on this seminar so far because it has had starting problems, namely hardly any student present on the first classes and therefore several re-starts until we reach a small group of interested students. Actually, this is the final year for my TSI Master at Paris-Dauphine, as it will become integrated within the new MASH Master next year. The latter started this year and drew away half of our potential applicants, presumably because of the wider spectrum between machine-learning, optimisation, programming and a tiny bit of statistics… If we manage to salvage [within the new Master] our speciality of offering the only Bayesian Statistics training in France, this will not be a complete disaster!

Anyway, the first seminar was about the great 1939 Biometrika paper by Pitman about the best invariant estimator appearing magically as a Bayes estimator! Alas, the student did not grasp the invariance part and hence focussed on less relevant technical parts, which was not a great experience (and therefore led me to abstain from posting the slides here). The second paper was *not* on my list but was proposed by another student as of yesterday when he realised he was to present today! This paper, entitled “The Counter-intuitive Non-informative Prior for the Bernoulli Family”, was published in the Journal of Statistics Education in 2004 by Zu and Liu, I had not heard of the paper (or of the journal) previously and I do not think it is worth advertising any further as it gives a very poor entry to non-informative priors in the simplest of settings, namely for Bernoulli B(p) observations. Indeed, the stance of the paper is to define a non-informative prior as one returning the MLE of p as its posterior expectation (missing altogether the facts that such a definition is parameterisation-invariant and that, given the modal nature of the MLE, a posterior mode would be much more appropriate, leading to the uniform prior of p as a solution) and that the corresponding prior was made of two Dirac masses at 0 and 1! Which again misses several key points like defining properly convergence in a space of probability distributions and using an improper prior *differently* from a proper prior. Esp. since in the next section, the authors switch to Haldane’s prior being the Be(0,0) distribution..! A prior that cannot be used since the posterior is not defined when all the observations are identical. Certainly *not* a paper to make it to *the* list! *(My student simply pasted pages from this paper as his slides and so I see again no point in reposting them here. )*