Archive for seminar

a year ago, a world away

Posted in Statistics with tags , , , , , , , , , , , , on February 24, 2021 by xi'an

Metropolis-Hastings via classification

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on February 23, 2021 by xi'an

Veronicka Rockova (from Chicago Booth) gave a talk on this theme at the Oxford Stats seminar this afternoon. Starting with a survey of ABC, synthetic likelihoods, and pseudo-marginals, to motivate her approach via GANs, learning an approximation of the likelihood from the GAN discriminator. Her explanation for the GAN type estimate was crystal clear and made me wonder at the connection with Geyer’s 1994 logistic estimator of the likelihood (a form of discriminator with a fixed generator). She also expressed the ABC approximation hence created as the actual posterior times an exponential tilt. Which she proved is of order 1/n. And that a random variant of the algorithm (where the shift is averaged) is unbiased. Most interestingly requiring no calibration and no tolerance. Except indirectly when building the discriminator. And no summary statistic. Noteworthy tension between correct shape and correct location.

Laplace’s Demon [coming home!]

Posted in Kids, Linux, pictures, Statistics, University life with tags , , , , , , , , , , , , , on May 11, 2020 by xi'an

A new online seminar is starting this week, called Laplace’s Demon [after too much immersion in His Dark Materials, lately, ather than Unix coding, I first wrote daemon!] and concerned with Bayesian Machine Learning at Scale. Run by Criteo in Paris (hence the Laplace filiation, I presume!). Here is the motivational blurb from their webpage

Machine learning is changing the world we live in at a break neck pace. From image recognition and generation, to the deployment of recommender systems, it seems to be breaking new ground constantly and influencing almost every aspect of our lives. In this seminar series we ask distinguished speakers to comment on what role Bayesian statistics and Bayesian machine learning have in this rapidly changing landscape. Do we need to optimally process information or borrow strength in the big data era? Are philosophical concepts such as coherence and the likelihood principle relevant when you are running a large scale recommender system? Are variational approximations, MCMC or EP appropriate in a production environment? Can I use the propensity score and call myself a Bayesian? How can I elicit a prior over a massive dataset? Is Bayes a reasonable theory of how to be perfect but a hopeless theory of how to be good? Do we need Bayes when we can just A/B test? What combinations of pragmatism and idealism can be used to deploy Bayesian machine learning in a large scale live system? We ask Bayesian believers, Bayesian pragmatists and Bayesian skeptics to comment on all of these subjects and more.

The seminar takes places on the second Wednesday of the month, at 5pm (GMT+2) starting ill-fatedly with myself on ABC-Gibbs this very Wednesday (13 May 2020), followed by Aki Vehtari, John Ormerod, Nicolas Chopin, François Caron, Pierre Latouche, Victor Elvira, Sara Filippi, and Chris Oates. (I think my very first webinar was a presentation at the Deutsche Bank, New York, I gave from CREST videoconference room from 8pm till midnight after my trip was cancelled when the Twin Towers got destroyed, on 07 September 2001…)

ABC World seminar

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on April 4, 2020 by xi'an

With most of the World being more or less confined at home, conferences cancelled one after the other, including ABC in Grenoble!, we are launching a fortnightly webinar on approximation Bayesian computation, methods, and inference. The idea is to gather members and disseminate results and innovation during these coming weeks and months under lock-down. And hopefully after!

At this point, the interface will be Blackboard Collaborate, run from Edinburgh by Michael Gutmann, for which neither registration nor software is required. Before each talk, a guest link will be mailed to the mailing list. Please register here to join the list.

The seminar is planned on Thursdays at either 9am or more likely 11:30 am UK (+1GMT) time, as we are still debating the best schedule to reach as many populated time zones as possible!, and the first speakers are

09.04.2020 Dennis Prangle Distilling importance sampling
23.04.2020 Ivis Kerama and Richard Everitt Rare event SMC²
07.05.2020 Umberto Picchini Stratified sampling and bootstrapping for ABC

Julyan’s talk on priors in Bayesian neural networks [cancelled!]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on March 5, 2020 by xi'an

Next Friday, 13 March at 1:30p.m., Julyan Arbel, researcher at Inria Grenoble will give a All about that Bayes talk at CMLA, ENS Paris-Saclay (building D’Alembert, room Condorcet, Cachan, RER stop Bagneux) on

Understanding Priors in Bayesian Neural Networks at the Unit Level

We investigate deep Bayesian neural networks with Gaussian weight priors and a class of ReLU-like nonlinearities. Bayesian neural networks with Gaussian priors are well known to induce an L², “weight decay”, regularization. Our results characterize a more intricate regularization effect at the level of the unit activations. Our main result establishes that the induced prior distribution on the units before and after activation becomes increasingly heavy-tailed with the depth of the layer. We show that first layer units are Gaussian, second layer units are sub-exponential, and units in deeper layers are characterized by sub-Weibull distributions. Our results provide new theoretical insight on deep Bayesian neural networks, which we corroborate with simulation experiments.