Archive for seminar

Gregynog #2 [jatp]

Posted in Kids, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , on April 26, 2017 by xi'an

MDL multiple hypothesis testing

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , on September 1, 2016 by xi'an

“This formulation reveals an interesting connection between multiple hypothesis testing and mixture modelling with the class labels corresponding to the accepted hypotheses in each test.”

After my seminar at Monash University last Friday, David Dowe pointed out to me the recent work by Enes Makalic and Daniel Schmidt on minimum description length (MDL) methods for multiple testing as somewhat related to our testing by mixture paper. Work which appeared in the proceedings of the 4th Workshop on Information Theoretic Methods in Science and Engineering (WITMSE-11), that took place in Helsinki, Finland, in 2011. Minimal encoding length approaches lead to choosing the model that enjoys the smallest coding length. Connected with, e.g., Rissannen‘s approach. The extension in this paper consists in considering K hypotheses at once on a collection of m datasets (the multiple then bears on the datasets rather than on the hypotheses). And to associate an hypothesis index to each dataset. When the objective function is the sum of (generalised) penalised likelihoods [as in BIC], it leads to selecting the “minimal length” model for each dataset. But the authors introduce weights or probabilities for each of the K hypotheses, which indeed then amounts to a mixture-like representation on the exponentiated codelengths. Which estimation by optimal coding was first proposed by Chris Wallace in his book. This approach eliminates the model parameters at an earlier stage, e.g. by maximum likelihood estimation, to return a quantity that only depends on the model index and the data. In fine, the purpose of the method differs from ours in that the former aims at identifying an appropriate hypothesis for each group of observations, rather than ranking those hypotheses for the entire dataset by considering the posterior distribution of the weights in the later. The mixture has somehow more of a substance in the first case, where separating the datasets into groups is part of the inference.

Michael Jordan’s seminar in Paris next week

Posted in Statistics, University life with tags , , , , , on June 3, 2016 by xi'an

Next week, on June 7, at 4pm, Michael will give a seminar at INRIA, rue du Charolais, Paris 12 (map). Here is the abstract:

A Variational Perspective on Accelerated Methods in Optimization

Accelerated gradient methods play a central role in optimization,achieving optimal rates in many settings. While many generalizations and extensions of Nesterov’s original acceleration method have been proposed,it is not yet clear what is the natural scope of the acceleration concept.In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the Bregman Lagrangian which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods correspond to travelling the same curve in space time at different speeds, and in this sense the continuous-time setting is the natural one for understanding acceleration.  Moreover, from this perspective, Nesterov’s technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms. [Joint work with Andre Wibisono and Ashia Wilson.]

(Interested readers need to register to attend the lecture.)

Rémi Bardenet’s seminar

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on April 7, 2016 by xi'an

Grand Palais from Esplanade des Invalides, Paris, Dec. 07, 2012Next week, Rémi Bardenet is giving a seminar in Paris, Thursday April 14, 2pm, in ENSAE [room 15] on MCMC methods for tall data. Unfortunately, I will miss this opportunity to discuss with Rémi as I will be heading to La Sapienza, Roma, for Clara Grazian‘s PhD defence the next day.  And on Monday afternoon, April 11, Nicolas Chopin will give a talk on quasi-Monte Carlo for sequential problems at Institut Henri Poincaré.

seminar in Harvard

Posted in Statistics, Travel with tags , , , , , , , , , , on March 16, 2016 by xi'an

harvard2103Next week, I will be in Harvard Monday and Tuesday, visiting friends in the Department of Statistics and giving a seminar. The slides for the talk will be quite similar to those of my talk in Bristol, a few weeks ago. Hopefully, there will not be too much overlap between both audiences! And hopefully I’ll manage to get to my conclusion before all hell breaks loose (which is why I strategically set my conclusion in the early slides!)

It’s the selection’s fault not the p-values’… [seminar]

Posted in pictures, Statistics, University life with tags , , , , , , on February 5, 2016 by xi'an

Paris and la Seine, from Pont du Garigliano, Oct. 20, 2011Yoav Benjamini will give a seminar talk in Paris next Monday on the above (full title: “The replicability crisis in science: It’s the selection’s fault not the p-values’“). (That I will miss for being in Warwick at the time.) With a fairly terse abstract:

I shall discuss the problem of lack of replicability of results in science, and point at selective inference as a statistical root cause. I shall then present a few strategies for addressing selective inference, and their application in genomics, brain research and earlier phases of clinical trials where both primary and secondary endpoints are being used.

Details: February 8, 2016, 16h, Université Pierre & Marie Curie, campus Jussieu, salle 15-16-101.

read paper [in Bristol]

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on January 29, 2016 by xi'an

Clifton & Durdham Downs, Bristol, Sept. 25, 2012I went to give a seminar in Bristol last Friday and I chose to present the testing with mixture paper. As we are busy working on the revision, I was eagerly looking for comments and criticisms that could strengthen this new version. As it happened, the (Bristol) Bayesian Cake (Reading) Club had chosen our paper for discussion, two weeks in a row!, hence the title!, and I got invited to join the group the morning prior to the seminar! This was, of course, most enjoyable and relaxed, including an home-made cake!, but also quite helpful in assessing our arguments in the paper. One point of contention or at least of discussion was the common parametrisation between the components of the mixture. Although all parametrisations are equivalent from a single component point of view, I can [almost] see why using a mixture with the same parameter value on all components may impose some unsuspected constraint on that parameter. Even when the parameter is the same moment for both components. This still sounds like a minor counterpoint in that the weight should converge to either zero or one and hence eventually favour the posterior on the parameter corresponding to the “true” model.

Another point that was raised during the discussion is the behaviour of the method under misspecification or for an M-open framework: when neither model is correct does the weight still converge to the boundary associated with the closest model (as I believe) or does a convexity argument produce a non-zero weight as it limit (as hinted by one example in the paper)? I had thought very little about this and hence had just as little to argue though as this does not sound to me like the primary reason for conducting tests. Especially in a Bayesian framework. If one is uncertain about both models to be compared, one should have an alternative at the ready! Or use a non-parametric version, which is a direction we need to explore deeper before deciding it is coherent and convergent!

A third point of discussion was my argument that mixtures allow us to rely on the same parameter and hence the same prior, whether proper or not, while Bayes factors are less clearly open to this interpretation. This was not uniformly accepted!

Thinking afresh about this approach also led me to broaden my perspective on the use of the posterior distribution of the weight(s) α: while previously I had taken those weights mostly as a proxy to the posterior probabilities, to be calibrated by pseudo-data experiments, as for instance in Figure 9, I now perceive them primarily as the portion of the data in agreement with the corresponding model [or hypothesis] and more importantly as a solution for staying away from a Neyman-Pearson-like decision. Or error evaluation. Usually, when asked about the interpretation of the output, my answer is to compare the behaviour of the posterior on the weight(s) with a posterior associated with a sample from each model. Which does sound somewhat similar to posterior predictives if the samples are simulated from the associated predictives. But the issue was not raised during the visit to Bristol, which possibly reflects on how unfrequentist the audience was [the Statistics group is], as it apparently accepted with no further ado the use of a posterior distribution as a soft assessment of the comparative fits of the different models. If not necessarily agreeing the need of conducting hypothesis testing (especially in the case of the Pima Indian dataset!).