Today, Veronika Rockova is giving a webinar on her paper with Tetsuya Kaji Metropolis-Hastings via classification. at the One World ABC seminar, at 11.30am UK time. (Which was also presented at the Oxford Stats seminar last Feb.) Please register if not already a member of the 1W ABC mailing list.
Archive for seminar
Metropolis-Hastings via Classification [One World ABC seminar]
Posted in Statistics, University life with tags ABC, ABC consistency, Chicago, Chicago Booth School of Business, classification, deep learning, discriminant analysis, GANs, logistic regression, Metropolis-Hastings algorithm, seminar, summary statistics, synthetic likelihood, University of Oxford, University of Warwick, webinar on May 27, 2021 by xi'anFisher, Bayes, and predictive Bayesian inference [seminar]
Posted in Statistics with tags fiducial inference, Foundations of Probability, inverse probability, Jerzy Neyman, Karl Pearson, R.A. Fisher, Rutgers University, seminar, Thomas Bayes, webinar on April 4, 2021 by xi'anAn interesting Foundations of Probability seminar at Rutgers University this Monday, at 4:30ET, 8:30GMT, by Sandy Zabell (the password is Angelina’s birthdate):
R. A. Fisher is usually perceived to have been a staunch critic of the Bayesian approach to statistics, yet his last book (Statistical Methods and Scientific Inference, 1956) is much closer in spirit to the Bayesian approach than the frequentist theories of Neyman and Pearson. This mismatch between perception and reality is best understood as an evolution in Fisher’s views over the course of his life. In my talk I will discuss Fisher’s initial and harsh criticism of “inverse probability”, his subsequent advocacy of fiducial inference starting in 1930, and his admiration for Bayes expressed in his 1956 book. Several of the examples Fisher discusses there are best understood when viewed against the backdrop of earlier controversies and antagonisms.
a year ago, a world away
Posted in Statistics with tags Bristol, COVID-19, demonstration, England, flight, Greta Thunberg, pandemics, plane trip, seminar, Travel, United Kingdom, University of Bristol, Wales on February 24, 2021 by xi'anMetropolis-Hastings via classification
Posted in pictures, Statistics, Travel, University life with tags ABC, ABC consistency, Chicago, Chicago Booth School of Business, deep learning, discriminant analysis, GANs, logistic regression, seminar, summary statistics, synthetic likelihood, University of Oxford, webinar, winter running on February 23, 2021 by xi'anVeronicka Rockova (from Chicago Booth) gave a talk on this theme at the Oxford Stats seminar this afternoon. Starting with a survey of ABC, synthetic likelihoods, and pseudo-marginals, to motivate her approach via GANs, learning an approximation of the likelihood from the GAN discriminator. Her explanation for the GAN type estimate was crystal clear and made me wonder at the connection with Geyer’s 1994 logistic estimator of the likelihood (a form of discriminator with a fixed generator). She also expressed the ABC approximation hence created as the actual posterior times an exponential tilt. Which she proved is of order 1/n. And that a random variant of the algorithm (where the shift is averaged) is unbiased. Most interestingly requiring no calibration and no tolerance. Except indirectly when building the discriminator. And no summary statistic. Noteworthy tension between correct shape and correct location.