Archive for sequential Monte Carlo

séminaire parisien de statistique [09/01/23]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , on January 22, 2023 by xi'an

I had missed the séminaire parisien de statistique for most of the Fall semester, hence was determined to attend the first session of the year 2023, the more because the talks were close to my interest. To wit, Chiara Amorino spoke about particle systems for McKean-Vlasov SDEs, when those are parameterised by several parameters, when observing repeatedly discretised versions, hereby establishing the consistence of a contrast estimator of these estimators. I was initially confused by the mention of interacting particles, since the work is not at all about related with simulation. Just wondering whether this contrast could prove useful for a likelihood-free approach in building a Gibbs distribution?

Valentin de Bortoli then spoke on diffusion Schrödinger bridges for generative models, which allowed me to better my understanding of this idea presented by Arnaud at the Flatiron workshop last November. The presentation here was quite different, using a forward versus backward explanation via a sequence of transforms that end up approximately Gaussian, once more reminiscent of sequential Monte Carlo. The transforms are themselves approximate Gaussian versions relying on adiscretised Ornstein-Ulhenbeck process, with a missing score term since said score involves a marginal density at each step of the sequence. It can be represented [as below] as an expectation conditional on the (observed) variate at time zero (with a connection with Hyvärinen’s NCE / score matching!) Practical implementation is done via neural networks.

Last but not least!, my friend Randal talked about his Kick-Kac formula, which connects with the one we considered in our 2004 paper with Jim Hobert. While I had heard earlier version, this talk was mostly on probability aspects and highly enjoyable as he included some short proofs. The formula is expressing the stationary probability measure π of the original Markov chain in terms of explorations between two visits to an accessible set C, more general than a small set. With at first an annoying remaining term due to the set not being Harris recurrent but which eventually cancels out. Memoryless transportation can be implemented because C is free for the picking, for instance the set where the target is bounded by a manageable density, allowing for an accept-reject step. The resulting chain is non-reversible. However, due to the difficulty to simulate from the target restricted to C, a second and parallel Markov chain is instead created. Performances, unsurprisingly, depend on the choice of C, but it can be adapted to the target on the go.

evidence estimation in finite and infinite mixture models

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on May 20, 2022 by xi'an

Adrien Hairault (PhD student at Dauphine), Judith and I just arXived a new paper on evidence estimation for mixtures. This may sound like a well-trodden path that I have repeatedly explored in the past, but methinks that estimating the model evidence doth remain a notoriously difficult task for large sample or many component finite mixtures and even more for “infinite” mixture models corresponding to a Dirichlet process. When considering different Monte Carlo techniques advocated in the past, like Chib’s (1995) method, SMC, or bridge sampling, they exhibit a range of performances, in terms of computing time… One novel (?) approach in the paper is to write Chib’s (1995) identity for partitions rather than parameters as (a) it bypasses the label switching issue (as we already noted in Hurn et al., 2000), another one is to exploit  Geyer (1991-1994) reverse logistic regression technique in the more challenging Dirichlet mixture setting, and yet another one a sequential importance sampling solution à la  Kong et al. (1994), as also noticed by Carvalho et al. (2010). [We did not cover nested sampling as it quickly becomes onerous.]

Applications are numerous. In particular, testing for the number of components in a finite mixture model or against the fit of a finite mixture model for a given dataset has long been and still is an issue of much interest and diverging opinions, albeit yet missing a fully satisfactory resolution. Using a Bayes factor to find the right number of components K in a finite mixture model is known to provide a consistent procedure. We furthermore establish there the consistence of the Bayes factor when comparing a parametric family of finite mixtures against the nonparametric ‘strongly identifiable’ Dirichlet Process Mixture (DPM) model.

[more than] everything you always wanted to know about marginal likelihood

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , on February 10, 2022 by xi'an

Earlier this year, F. Llorente, L. Martino, D. Delgado, and J. Lopez-Santiago have arXived an updated version of their massive survey on marginal likelihood computation. Which I can only warmly recommend to anyone interested in the matter! Or looking for a base camp to initiate a graduate project. They break the methods into four families

  1. Deterministic approximations (e.g., Laplace approximations)
  2. Methods based on density estimation (e.g., Chib’s method, aka the candidate’s formula)
  3. Importance sampling, including sequential Monte Carlo, with a subsection connecting with MCMC
  4. Vertical representations (mostly, nested sampling)

Besides sheer computation, the survey also broaches upon issues like improper priors and alternatives to Bayes factors. The parts I would have done in more details are reversible jump MCMC and the long-lasting impact of Geyer’s reverse logistic regression (with the noise contrasting extension), even though the link with bridge sampling is briefly mentioned there. There is even a table reporting on the coverage of earlier surveys. Of course, the following postnote of the manuscript

The Christian Robert’s blog deserves a special mention , since Professor C. Robert has devoted several entries of his blog with very interesting comments regarding the marginal likelihood estimation and related topics.

does not in the least make me less objective! Some of the final recommendations

  • use of Naive Monte Carlo [simulate from the prior] should be always considered [assuming a proper prior!]
  • a multiple-try method is a good choice within the MCMC schemes
  • optimal umbrella sampling estimator is difficult and costly to implement , so its best performance may not be achieved in practice
  • adaptive importance sampling uses the posterior samples to build a suitable normalized proposal, so it benefits from localizing samples in regions of high posterior probability while preserving the properties of standard importance sampling
  • Chib’s method is a good alternative, that provide very good performances [but is not always available]
  • the success [of nested sampling] in the literature is surprising.

SMC 22 coming soon!

Posted in Statistics with tags , , , , , , , , , on February 7, 2022 by xi'an

The 5th Workshop on Sequential Monte Carlo Methods (SMC 2022) will take place in Madrid on 4-6 May 2022. More precisely on the Leganés campus of Universidad Carlos III de Madrid. Registrations are now open, with very modest registration fees and the list of invited speakers is available on the webpage of the workshop. (The SMC 2020 workshop was cancelled due to the COVID-19 pandemic. An earlier workshop took place at CREST in 2015.)

Introduction to Sequential Monte Carlo [book review]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , on June 8, 2021 by xi'an

[Warning: Due to many CoI, from Nicolas being a former PhD student of mine, to his being a current colleague at CREST, to Omiros being co-deputy-editor for Biometrika, this review will not be part of my CHANCE book reviews.]

My friends Nicolas Chopin and Omiros Papaspiliopoulos wrote in 2020 An Introduction to Sequential Monte Carlo (Springer) that took several years to achieve and which I find remarkably coherent in its unified presentation. Particles filters and more broadly sequential Monte Carlo have expended considerably in the last 25 years and I find it difficult to keep track of the main advances given the expansive and heterogeneous literature. The book is also quite careful in its mathematical treatment of the concepts and, while the Feynman-Kac formalism is somewhat scary, it provides a careful introduction to the sampling techniques relating to state-space models and to their asymptotic validation. As an introduction it does not go to the same depths as Pierre Del Moral’s 2004 book or our 2005 book (Cappé et al.). But it also proposes a unified treatment of the most recent developments, including SMC² and ABC-SMC. There is even a chapter on sequential quasi-Monte Carlo, naturally connected to Mathieu Gerber’s and Nicolas Chopin’s 2015 Read Paper. Another significant feature is the articulation of the practical part around a massive Python package called particles [what else?!]. While the book is intended as a textbook, and has been used as such at ENSAE and in other places, there are only a few exercises per chapter and they are not necessarily manageable (as Exercise 7.1, the unique exercise for the very short Chapter 7.) The style is highly pedagogical, take for instance Chapter 10 on the various particle filters, with a detailed and separate analysis of the input, algorithm, and output of each of these. Examples are only strategically used when comparing methods or illustrating convergence. While the MCMC chapter (Chapter 15) is surprisingly small, it is actually an introducing of the massive chapter on particle MCMC (and a teaser for an incoming Papaspiloulos, Roberts and Tweedie, a slow-cooking dish that has now been baking for quite a while!).

%d bloggers like this: