Archive for sequential Monte Carlo

particular degeneracy in ABC model choice

Posted in Statistics with tags , , , , , , on February 22, 2019 by xi'an

In one of the presentations by the last cohort of OxWaSP students, the group decided to implement an ABC model choice strategy based on sequential ABC inspired from Toni et al.  (2008). and this made me reconsider this approach (disclaimer: no criticism of the students implied in the following!). Indeed, the outcome of the simulation led to the ultimate selection of a single model, exclusive of all other models, corresponding to a posterior probability of one in favour of this model. Which sounds like a drawback of the ABC-SMC model choice approach in this setting, namely that it is quite prone to degeneracy, much more than standard SMC, since once a model vanishes from the list, it can never reappear in the following iterations if I am reading the algorithm correctly. To avoid this degeneracy, one would need to keep a population of particles of a given size, for each model, towards using it as a pool for moves at following iterations… Which also means that running in parallel as many ABC-SMC filters as there are models would be equally or more efficient, a wee bit like parallel MCMC chains may prove more efficient than reversible jump for model comparison. (On the trivial side, the OxWaSP seminar on the same day was briefly interrupted by water leakage caused by Storm Eric and poor workmanship on the new building!)

Computational Bayesian Statistics [book review]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , on February 1, 2019 by xi'an

This Cambridge University Press book by M. Antónia Amaral Turkman, Carlos Daniel Paulino, and Peter Müller is an enlarged translation of a set of lecture notes in Portuguese. (Warning: I have known Peter Müller from his PhD years in Purdue University and cannot pretend to perfect objectivity. For one thing, Peter once brought me frozen-solid beer: revenge can also be served cold!) Which reminds me of my 1994 French edition of Méthodes de Monte Carlo par chaînes de Markov, considerably upgraded into Monte Carlo Statistical Methods (1998) thanks to the input of George Casella. (Re-warning: As an author of books on the same topic(s), I can even less pretend to objectivity.)

“The “great idea” behind the development of computational Bayesian statistics is the recognition that Bayesian inference can be implemented by way of simulation from the posterior distribution.”

The book is written from a strong, almost militant, subjective Bayesian perspective (as, e.g., when half-Bayesians are mentioned!). Subjective (and militant) as in Dennis Lindley‘s writings, eminently quoted therein. As well as in Tony O’Hagan‘s. Arguing that the sole notion of a Bayesian estimator is the entire posterior distribution. Unless one brings in a loss function. The book also discusses the Bayes factor in a critical manner, which is fine from my perspective.  (Although the ban on improper priors makes its appearance in a very indirect way at the end of the last exercise of the first chapter.)

Somewhat at odds with the subjectivist stance of the previous chapter, the chapter on prior construction only considers non-informative and conjugate priors. Which, while understandable in an introductory book, is a wee bit disappointing. (When mentioning Jeffreys’ prior in multidimensional settings, the authors allude to using univariate Jeffreys’ rules for the marginal prior distributions, which is not a well-defined concept or else Bernardo’s and Berger’s reference priors would not have been considered.) The chapter also mentions the likelihood principle at the end of the last exercise, without a mention of the debate about its derivation by Birnbaum. Or Deborah Mayo’s recent reassessment of the strong likelihood principle. The following chapter is a sequence of illustrations in classical exponential family models, classical in that it is found in many Bayesian textbooks. (Except for the Poison model found in Exercise 3.3!)

Nothing to complain (!) about the introduction of Monte Carlo methods in the next chapter, especially about the notion of inference by Monte Carlo methods. And the illustration by Bayesian design. The chapter also introduces Rao-Blackwellisation [prior to introducing Gibbs sampling!]. And the simplest form of bridge sampling. (Resuscitating the weighted bootstrap of Gelfand and Smith (1990) may not be particularly urgent for an introduction to the topic.) There is furthermore a section on sequential Monte Carlo, including the Kalman filter and particle filters, in the spirit of Pitt and Shephard (1999). This chapter is thus rather ambitious in the amount of material covered with a mere 25 pages. Consensus Monte Carlo is even mentioned in the exercise section.

“This and other aspects that could be criticized should not prevent one from using this [Bayes factor] method in some contexts, with due caution.”

Chapter 5 turns back to inference with model assessment. Using Bayesian p-values for model assessment. (With an harmonic mean spotted in Example 5.1!, with no warning about the risks, except later in 5.3.2.) And model comparison. Presenting the whole collection of xIC information criteria. from AIC to WAIC, including a criticism of DIC. The chapter feels somewhat inconclusive but methinks this is the right feeling on the current state of the methodology for running inference about the model itself.

“Hint: There is a very easy answer.”

Chapter 6 is also a mostly standard introduction to Metropolis-Hastings algorithms and the Gibbs sampler. (The argument given later of a Metropolis-Hastings algorithm with acceptance probability one does not work.) The Gibbs section also mentions demarginalization as a [latent or auxiliary variable] way to simulate from complex distributions [as we do], but without defining the notion. It also references the precursor paper of Tanner and Wong (1987). The chapter further covers slice sampling and Hamiltonian Monte Carlo, the later with sufficient details to lead to reproducible implementations. Followed by another standard section on convergence assessment, returning to the 1990’s feud of single versus multiple chain(s). The exercise section gets much larger than in earlier chapters with several pages dedicated to most problems. Including one on ABC, maybe not very helpful in this context!

“…dimension padding (…) is essentially all that is to be said about the reversible jump. The rest are details.”

The next chapter is (somewhat logically) the follow-up for trans-dimensional problems and marginal likelihood approximations. Including Chib’s (1995) method [with no warning about potential biases], the spike & slab approach of George and McCulloch (1993) that I remember reading in a café at the University of Wyoming!, the somewhat antiquated MC³ of Madigan and York (1995). And then the much more recent array of Bayesian lasso techniques. The trans-dimensional issues are covered by the pseudo-priors of Carlin and Chib (1995) and the reversible jump MCMC approach of Green (1995), the later being much more widely employed in the literature, albeit difficult to tune [and even to comprehensively describe, as shown by the algorithmic representation in the book] and only recommended for a large number of models under comparison. Once again the exercise section is most detailed, with recent entries like the EM-like variable selection algorithm of Ročková and George (2014).

The book also includes a chapter on analytical approximations, which is also the case in ours [with George Casella] despite my reluctance to bring them next to exact (simulation) methods. The central object is the INLA methodology of Rue et al. (2009) [absent from our book for obvious calendar reasons, although Laplace and saddlepoint approximations are found there as well]. With a reasonable amount of details, although stopping short of implementable reproducibility. Variational Bayes also makes an appearance, mostly following the very recent Blei et al. (2017).

The gem and originality of the book are primarily to be found in the final and ninth chapter where four software are described, all with interfaces to R: OpenBUGS, JAGS, BayesX, and Stan, plus R-INLA which is processed in the second half of the chapter (because this is not a simulation method). As in the remainder of the book, the illustrations are related to medical applications. Worth mentioning is the reminder that BUGS came in parallel with Gelfand and Smith (1990) Gibbs sampler rather than as a consequence. Even though the formalisation of the Markov chain Monte Carlo principle by the later helped in boosting the power of this software. (I also appreciated the mention made of Sylvia Richardson’s role in this story.) Since every software is illustrated in depth with relevant code and output, and even with the shortest possible description of its principle and modus vivendi, the chapter is 60 pages long [and missing a comparative conclusion]. Given my total ignorance of the very existence of the BayesX software, I am wondering at the relevance of its inclusion in this description rather than, say, other general R packages developed by authors of books such as Peter Rossi. The chapter also includes a description of CODA, with an R version developed by Martin Plummer [now a Warwick colleague].

In conclusion, this is a high-quality and all-inclusive introduction to Bayesian statistics and its computational aspects. By comparison, I find it much more ambitious and informative than Albert’s. If somehow less pedagogical than the thicker book of Richard McElreath. (The repeated references to Paulino et al.  (2018) in the text do not strike me as particularly useful given that this other book is written in Portuguese. Unless an English translation is in preparation.)

Disclaimer: this book was sent to me by CUP for endorsement and here is what I wrote in reply for a back-cover entry:

An introduction to computational Bayesian statistics cooked to perfection, with the right mix of ingredients, from the spirited defense of the Bayesian approach, to the description of the tools of the Bayesian trade, to a definitely broad and very much up-to-date presentation of Monte Carlo and Laplace approximation methods, to an helpful description of the most common software. And spiced up with critical perspectives on some common practices and an healthy focus on model assessment and model selection. Highly recommended on the menu of Bayesian textbooks!

And this review is likely to appear in CHANCE, in my book reviews column.

unbiased estimation of log-normalising constants

Posted in Statistics with tags , , , , , , , on October 16, 2018 by xi'an

Maxime Rischard, Pierre Jacob, and Natesh Pillai [warning: both of whom are co-authors and friends of mine!] have just arXived a paper on the use of path sampling (a.k.a., thermodynamic integration) for log-constant unbiased approximation and the resulting consequences on Bayesian model comparison by X validation. If the goal is the estimation of the log of a ratio of two constants, creating an artificial path between the corresponding distributions and looking at the derivative at any point of this path of the log-density produces an unbiased estimator. Meaning that random sampling along the path, corrected by the distribution of the sampling still produces an unbiased estimator. From there the authors derive an unbiased estimator for any X validation objective function, CV(V,T)=-log p(V|T), taking m observations T in and leaving n-m observations T out… The marginal conditional log density in the criterion is indeed estimated by an unbiased path sampler, using a powered conditional likelihood. And unbiased MCMC schemes à la Jacob et al. for simulating unbiased MCMC realisations of the intermediary targets on the path. Tuning it towards an approximately constant cost for all powers.

So in all objectivity and fairness (!!!), I am quite excited by this new proposal within my favourite area! Or rather two areas since it brings together the estimation of constants and an alternative to Bayes factors for Bayesian testing. (Although the paper does not broach upon the calibration of the X validation values.)

Metropolis-Hastings importance sampling

Posted in Books, Statistics, University life with tags , , , , , , , , , on June 6, 2018 by xi'an

[Warning: As I first got the paper from the authors and sent them my comments, this paper read contains their reply as well.]

In a sort of crazy coincidence, Daniel Rudolf and Björn Sprungk arXived a paper on a Metropolis-Hastings importance sampling estimator that offers similarities with  the one by Ingmar Schuster and Ilja Klebanov posted on arXiv the same day. The major difference in the construction of the importance sampler is that Rudolf and Sprungk use the conditional distribution of the proposal in the denominator of their importance weight, while Schuster and Klebanov go for the marginal (or a Rao-Blackwell representation of the marginal), mostly in an independent Metropolis-Hastings setting (for convergence) and for a discretised Langevin version in the applications. The former use a very functional L² approach to convergence (which reminded me of the early Schervish and Carlin, 1990, paper on the convergence of MCMC algorithms), not all of it necessary in my opinion. As for instance the extension of convergence properties to the augmented chain, namely (current, proposed), is rather straightforward since the proposed chain is a random transform of the current chain. An interesting remark at the end of the proof of the CLT is that the asymptotic variance of the importance sampling estimator is the same as with iid realisations from the target. This is a point we also noticed when constructing population Monte Carlo techniques (more than ten years ago), namely that dependence on the past in sequential Monte Carlo does not impact the validation and the moments of the resulting estimators, simply because “everything cancels” in importance ratios. The mean square error bound on the Monte Carlo error (Theorem 20) is not very surprising as the term ρ(y)²/P(x,y) appears naturally in the variance of importance samplers.

The first illustration where the importance sampler does worse than the initial MCMC estimator for a wide range of acceptance probabilities (Figures 2 and 3, which is which?) and I do not understand the opposite conclusion from the authors.

[Here is an answer from Daniel and Björn about this point:]

Indeed the formulation in our paper is unfortunate. The point we want to stress is that we observed in the numerical experiments certain ranges of step-sizes for which MH importance sampling shows a better performance than the classical MH algorithm with optimal scaling. Meaning that the MH importance sampling with optimal step-size can outperform MH sampling, without using additional computational resources. Surprisingly, the optimal step-size for the MH importance sampling estimator seems to remain constant for an increasing dimension in contrast to the well-known optimal scaling of the MH algorithm (given by a constant optimal acceptance rate).

The second uses the Pima Indian diabetes benchmark, amusingly (?) referring to Chopin and Ridgway (2017) who warn against the recourse to this dataset and to this model! The loss in mean square error due to the importance sampling may again be massive (Figure 5) and setting for an optimisation of the scaling factor in Metropolis-Hastings algorithms sounds unrealistic.

[And another answer from Daniel and Björn about this point:]

Indeed, Chopin and Ridgway suggest more complex problems with a larger number of covariates as benchmarks. However, the well-studied PIMA data set is a sufficient example in order to illustrate the possible benefits but also the limitations of the MH importance sampling approach. The latter are clearly (a) the required knowledge about the optimal step-size—otherwise the performance can indeed be dramatically worse than for the MH algorithm—and (b) the restriction to a small or at most moderate number of covariates. As you are indicating, optimizing the scaling factor is a challenging task. However, the hope is to derive some simple rule of thumb for the MH importance sampler similar to the well-known acceptance rate tuning for the standard MCMC estimator.

controlled sequential Monte Carlo [BiPS seminar]

Posted in Statistics with tags , , , , , , , on June 5, 2018 by xi'an

The last BiPS seminar of the semester will be given by Jeremy Heng (Harvard) on Monday 11 June at 2pm, in room 3001, ENSAE, Paris-Saclay about his Controlled sequential Monte Carlo paper:

Sequential Monte Carlo methods, also known as particle methods, are a popular set of techniques to approximate high-dimensional probability distributions and their normalizing constants. They have found numerous applications in statistics and related fields as they can be applied to perform state estimation for non-linear non-Gaussian state space models and Bayesian inference for complex static models. Like many Monte Carlo sampling schemes, they rely on proposal distributions which have a crucial impact on their performance. We introduce here a class of controlled sequential Monte Carlo algorithms, where the proposal distributions are determined by approximating the solution to an associated optimal control problem using an iterative scheme. We provide theoretical analysis of our proposed methodology and demonstrate significant gains over state-of-the-art methods at a fixed computational complexity on a variety of applications.

ABC with no prior

Posted in Books, Kids, pictures with tags , , , , , , on April 30, 2018 by xi'an

“I’m trying to fit a complex model to some data that take a large amount of time to run. I’m also unable to write down a Likelihood function to this problem and so I turned to approximate Bayesian computation (ABC). Now, given the slowness of my simulations, I used Sequential ABC (…) In fact, contrary to the concept of Bayesian statistics (new knowledge updating old knowledge) I would like to remove all the influence of the priors from my estimates. “

A question from X validated where I have little to contribute as the originator of the problem had the uttermost difficulties to understand that ABC could not be run without a probability structure on the parameter space. Maybe a fiducialist in disguise?! To this purpose this person simulated from a collection of priors and took the best 5% across the priors, which is akin to either running a mixture prior or to use ABC for conducting prior choice, which reminds me of a paper of Toni et al. Not that it helps removing “all the influence of the priors”, of course…

An unrelated item of uninteresting trivia is that a question I posted in 2012 on behalf of my former student Gholamossein Gholami about the possibility to use EM to derive a Weibull maximum likelihood estimator (instead of sheer numerical optimisation) got over the 10⁴ views. But no answer so far!

controlled SMC

Posted in Books, pictures, Statistics, University life with tags , , , , , on December 18, 2017 by xi'an

At the end of [last] August, Jeremy Heng, Adrian Bishop†, George Deligiannidis and Arnaud Doucet arXived a paper on controlled sequential Monte Carlo (SMC). That we read today at the BiPs reading group in Paris-Saclay, when I took these notes. The setting is classical SMC, but with a twist in that the proposals at each time iteration are modified by an importance function. (I was quite surprised to discover that this was completely new in that I was under the false impression that it had been tried ages ago!) This importance sampling setting can be interpreted as a change of measures on both the hidden Markov chain and on its observed version. So that the overall normalising constant remains the same. And then being in an importance sampling setting there exists an optimal choice for the importance functions. That results in a zero variance estimated normalising constant, unsurprisingly. And the optimal solution is actually the backward filter familiar to SMC users.

A large part of the paper actually concentrates on figuring out an implementable version of this optimal solution. Using dynamic programming. And projection of each local generator over a simple linear space with Gaussian kernels (aka Gaussian mixtures). Which becomes feasible through the particle systems generated at earlier iterations of said dynamic programming.

The paper is massive, both in terms of theoretical results and of the range of simulations, and we could not get through it within the 90 minutes Sylvain LeCorff spent on presenting it. I can only wonder at this stage how much Rao-Blackwellisation or AMIS could improve the performances of the algorithm. (A point I find quite amazing in Proposition 1 is that the normalising constant Z of the filtering distribution does not change along observations when using the optimal importance function, which translates into the estimates being nearly constant after a few iterations.)