Archive for simulation-based inference

distortion estimates for approximate Bayesian inference

Posted in pictures, Statistics, University life with tags , , , , , , , , , on July 7, 2020 by xi'an

A few days ago, Hanwen Xing, Geoff Nichols and Jeong Eun Lee arXived a paper with the following title, to be presented at uai2020. Towards assessing the fit of the approximation for the actual posterior, given the available data. This covers of course ABC methods (which seems to be the primary focus of the paper) but also variational inference and synthetic likelihood versions. For a parameter of interest, the difference between exact and approximate marginal posterior distributions is see as a distortion map, D = F o G⁻¹, interpreted as in optimal transport and estimated by normalising flows. Even when the approximate distribution G is poorly estimated since D remains the cdf of G(X) when X is distributed from F. The marginal posterior approximate cdf G can be estimated by ABC or another approximate technique. The distortion function D is itself restricted to be a Beta cdf, with parameters estimated by a neural network (although based on which input is unclear to me, unless the weights in (5) are the neural weights). The assessment is based on the estimated distortion at the dataset, as a significant difference from the identity signal a poor fit for the approximation. Overall, the procedure seems implementable rather easily and while depending on calibrating choices (other than the number of layers in the neural network) a realistic version of the simulation-based diagnostic of Talts et al. (2018).

frontier of simulation-based inference

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on June 11, 2020 by xi'an

“This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, `The Science of Deep Learning,’ held March 13–14, 2019, at the National Academy of Sciences in Washington, DC.”

A paper by Kyle Cranmer, Johann Brehmer, and Gilles Louppe just appeared in PNAS on the frontier of simulation-based inference. Sounding more like a tribune than a research paper producing new input. Or at least like a review. Providing a quick introduction to simulators, inference, ABC. Stating the shortcomings of simulation-based inference as three-folded:

  1. costly, since required a large number of simulated samples
  2. loosing information through the use of insufficient summary statistics or poor non-parametric approximations of the sampling density.
  3. wasteful as requiring new computational efforts for new datasets, primarily for ABC as learning the likelihood function (as a function of both the parameter θ and the data x) is only done once.

And the difficulties increase with the dimension of the data. While the points made above are correct, I want to note that ideally ABC (and Bayesian inference as a whole) only depends on a single dimension observation, which is the likelihood value. Or more practically that it only depends on the distance from the observed data to the simulated data. (Possibly the Wasserstein distance between the cdfs.) And that, somewhat unrealistically, that ABC could store the reference table once for all. Point 3 can also be debated in that the effort of learning an approximation can only be amortized when exactly the same model is re-employed with new data, which is likely in industrial applications but less in scientific investigations, I would think. About point 2, the paper misses part of the ABC literature on selecting summary statistics, e.g., the culling afforded by random forests ABC, or the earlier use of the score function in Martin et al. (2019).

The paper then makes a case for using machine-, active-, and deep-learning advances to overcome those blocks. Recouping other recent publications and talks (like Dennis on One World ABC’minar!). Once again presenting machine-learning techniques such as normalizing flows as more efficient than traditional non-parametric estimators. Of which I remain unconvinced without deeper arguments [than the repeated mention of powerful machine-learning techniques] on the convergence rates of these estimators (rather than extolling the super-powers of neural nets).

“A classifier is trained using supervised learning to discriminate two sets of data, although in this case both sets come from the simulator and are generated for different parameter points θ⁰ and θ¹. The classifier output function can be converted into an approximation of the likelihood ratio between θ⁰ and θ¹ (…) learning the likelihood or posterior is an unsupervised learning problem, whereas estimating the likelihood ratio through a classifier is an example of supervised learning and often a simpler task.”

The above comment is highly connected to the approach set by Geyer in 1994 and expanded in Gutmann and Hyvärinen in 2012. Interestingly, at least from my narrow statistician viewpoint!, the discussion about using these different types of approximation to the likelihood and hence to the resulting Bayesian inference never engages into a quantification of the approximation or even broaches upon the potential for inconsistent inference unlocked by using fake likelihoods. While insisting on the information loss brought by using summary statistics.

“Can the outcome be trusted in the presence of imperfections such as limited sample size, insufficient network capacity, or inefficient optimization?”

Interestingly [the more because the paper is classified as statistics] the above shows that the statistical question is set instead in terms of numerical error(s). With proposals to address it ranging from (unrealistic) parametric bootstrap to some forms of GANs.

PhD position for research in ABC in Chalmers University

Posted in Statistics with tags , , , , , , , , , on May 27, 2020 by xi'an

[Posting a call for PhD candidates from Umberto Piccini as the deadline is June 1, next Monday!]

A PhD student position in mathematical statistics on simulation-based inference methods for models with an “intractable” likelihood is available at the Dept. Mathematical Sciences, Chalmers University, Gothenburg (Sweden).

You will be part of an international collaboration to create new methodology bridging between simulation-based inference (such as approximate Bayesian computation and other likelihood-free methods) and deep neuronal networks. The goal is to ease inference for stochastic modelling.

Details on the project and the essential requirements are at

The PhD student position is fully funded and is up to 5 years, in the dynamic and international city of Gothenburg, the second largest city in Sweden, As a PhD student in Mathematical Sciences you will have opportunities for many inspiring conversations, a lot of autonomous work and some travel.

The position will be supervised by Assoc. Prof. Umberto Picchini.

Apply by 01 June 2020 following the instructions at

For informal enquiries, please get in touch with Umberto Picchini