In the latest Nature issue, a long cover of Asimov’s contributions to science and rationality. And a five page article on the dopamine reward in the brain seen as a probability distribution, seen as distributional reinforcement learning by researchers from DeepMind, UCL, and Harvard. Going as far as “testing” for this theory with a p-value of 0.008..! Which could be as well a signal of variability between neurons to dopamine rewards (with a p-value of 10⁻¹⁴, whatever that means). Another article about deep learning about protein (3D) structure prediction. And another one about learning neural networks via specially designed devices called memristors. And yet another one on West Africa population genetics based on four individuals from the Stone to Metal age (8000 and 3000 years ago), SNPs, PCA, and admixtures. With no ABC mentioned (I no longer have access to the journal, having missed renewal time for my subscription!). And the literal plague of a locust invasion in Eastern Africa. Making me wonder anew as to why proteins could not be recovered from the swarms of locust to partly compensate for the damages. (Locusts eat their bodyweight in food every day.) And the latest news from NeurIPS about diversity and inclusion. And ethics, as in checking for responsibility and societal consequences of research papers. Reviewing the maths of a submitted paper or the reproducibility of an experiment is already challenging at times, but evaluating the biases in massive proprietary datasets or the long-term societal impact of a classification algorithm may prove beyond the realistic.

## Archive for SNPs

## Nature tidbits [the Bayesian brain]

Posted in Statistics with tags ABC, deep learning, DeepMind, desert locust, Harvard University, Human Genetics, Isaac Asimov, memristors, neural network, NeurIPS, p-values, SNPs, UCL, University College London, Vancouver on March 8, 2020 by xi'an## abcfr 0.9-3

Posted in R, Statistics, University life with tags ABC, ABC model choice, abcrf, bioinformatics, CRAN, R, random forests, reference table, SNPs on August 27, 2015 by xi'an**I**n conjunction with our reliable ABC model choice via random forest paper, about to be resubmitted to *Bioinformatics*, we have contributed an R package called abcrf that produces a most likely model and its posterior probability out of an ABC reference table. In conjunction with the realisation that we could devise an approximation to the (ABC) posterior probability using a secondary random forest. “We” meaning Jean-Michel Marin and Pierre Pudlo, as I only acted as a beta tester!

The package abcrf consists of three functions:

*abcrf*, which constructs a random forest from a reference table and returns an object of class `abc-rf’;*plot.abcrf*, which gives both variable importance plot of a model choice abc-rf object and the projection of the reference table on the LDA axes;*predict.abcrf*, which predict the model for new data and evaluate the posterior probability of the MAP.

An illustration from the manual:

data(snp) data(snp.obs) mc.rf <- abcrf(snp[1:1e3, 1], snp[1:1e3, -1]) predict(mc.rf, snp[1:1e3, -1], snp.obs)

## posterior predictive checks for admixture models

Posted in pictures, Statistics, Travel, University life with tags ABC model choice, arXiv, Bernoulli, goodness of fit, Human Genomics, Kingman's coalescent, mixture estimation, SNPs on July 8, 2014 by xi'an**I**n a posting coincidence, just a few days after we arXived our paper on ABC model choice with random forests, where we use posterior predictive errors for assessing the variability of the random forest procedure, David Mimno, David Blei, and Barbara Engelhardt arXived a paper on posterior predictive checks to quantify lack-of-fit in admixture models of latent population structure, which deals with similar data and models, while also using the posterior predictive as a central tool. (*Marginalia:* the paper is a wee bit difficult to read [esp. with France-Germany playing in the airport bar!] as the modelling is only clearly described at the very end. I suspect this arXived version was put together out of a submission to a journal like Nature or PNAS, with mentions of a Methods section that does not appear here and of Supplementary Material that turned into subsections of the Discussion section.)

**T**he dataset are genomic datasets made of SNPs (single nucleotide polymorphisms). For instance, the first (HapMap) dataset corresponds to 1,043 individuals and 468,167 SNPs. The model is simpler than Kingman’s coalescent, hence its likelihood does not require ABC steps to run inference. The admixture model in the paper is essentially a mixture model over ancestry indices with individual dependent weights with Bernoulli observations, hence resulting into a completed likelihood of the form

(which looks more formidable than it truly is!). Regular Bayesian inference is thus possible in this setting, implementing e.g. Gibbs sampling. The authors chose instead to rely on EM and thus derived the maximum likelihood estimators of the (many) parameters of the admixture. And of the latent variables **z**. Their posterior predictive check is based on the simulation of pseudo-observations (as in ABC!) from the above likelihood, with parameters and latent variables replaced with their EM estimates (unlike ABC). There is obviously some computational reason in doing this instead of simulating from the posterior, albeit implicit in the paper. I am however slightly puzzled by the conditioning on the latent variable estimate **ẑ**, as its simulation is straightforward and as a latent variable is more a missing observation than a parameter. Given those 30 to 100 replications of the data, an empirical distribution of a discrepancy function is used to assess whether or not the equivalent discrepancy for the observation is an outlier. If so, the model is not appropriate for the data. (Interestingly, the discrepancy is measured via the Bayes factor of z-scores.)

**T**he connection with our own work is that the construction of discrepancy measures proposed in this paper could be added to our already large collection of summary statistics to check to potential impact in model comparison, i.e. for a significant contribution to the random forest nodes. Conversely, the most significant summary statistics could then be tested as discrepancy measures. Or, more in tune with our Series B paper on the proper selection of summary variables, the distribution of those discrepancy measures could be compared across potential models. Assuming this does not take too much computing power…

## ABC model choice by random forests

Posted in pictures, R, Statistics, Travel, University life with tags ABC, ABC model choice, arXiv, Asian lady beetle, CART, classification, DIYABC, machine learning, model posterior probabilities, Montpellier, posterior predictive, random forests, SNPs, using the data twice on June 25, 2014 by xi'an**A**fter more than a year of collaboration, meetings, simulations, delays, switches, visits, more delays, more simulations, discussions, and a final marathon wrapping day last Friday, Jean-Michel Marin, Pierre Pudlo, and I at last completed our latest collaboration on ABC, with the central arguments that (a) using random forests is a good tool for choosing the most appropriate model and (b) evaluating the posterior misclassification error rather than the posterior probability of a model is an appropriate paradigm shift. The paper has been co-signed with our population genetics colleagues, Jean-Marie Cornuet and Arnaud Estoup, as they provided helpful advice on the tools and on the genetic illustrations and as they plan to include those new tools in their future analyses and DIYABC software. ABC model choice via random forests is now arXived and very soon to be submitted…

**O**ne scientific reason for this fairly long conception is that it took us several iterations to understand the intrinsic nature of the random forest tool and how it could be most naturally embedded in ABC schemes. We first imagined it as a filter from a set of summary statistics to a subset of significant statistics (hence the automated ABC advertised in some of my past or future talks!), with the additional appeal of an associated distance induced by the forest. However, we later realised that (a) further ABC steps were counterproductive once the model was selected by the random forest and (b) including more summary statistics was always beneficial to the performances of the forest and (c) the connections between (i) the true posterior probability of a model, (ii) the ABC version of this probability, (iii) the random forest version of the above, were at best very loose. The above picture is taken from the paper: it shows how the true and the ABC probabilities (do not) relate in the example of an MA(q) model… We thus had another round of discussions and experiments before deciding the unthinkable, namely to give up the attempts to approximate the posterior probability in this setting and to come up with another assessment of the uncertainty associated with the decision. This led us to propose to compute a posterior predictive error as the error assessment for ABC model choice. This is mostly a classification error but (a) it is based on the ABC posterior distribution rather than on the prior and (b) it does not require extra-computations when compared with other empirical measures such as cross-validation, while avoiding the sin of using the data twice!

## MCMSki IV [day 2.5]

Posted in Mountains, pictures, Statistics, University life with tags ABC, AMIS, extremes, parallelisation, poster session, raclette, SNPs, sticky Metropolis, synthetic likelihood, warhammer on January 8, 2014 by xi'an**D**espite a good rest during the ski break, my cold did not get away (no magic left in this world!) and I thus had a low attention span to attend the *Bayesian statistics and Population genetics* session: while Jukka Corander mentioned the improvement brought by our AMIS algorithm, I had difficulties getting the nature of the model, if only because he used a blackboard-like font that made math symbols too tiny to read. (Nice fonts, otherwise!), Daniel Lawson (of vomiting Warhammer fame!) talked about the alluring notion of a statistical emulator, and Barbara Engelhardt talked about variable selection in a SNP setting. I did not get a feeling on how handling ten millions of SNPs was possible in towards a variable selection goal. My final session of the day was actually “my” invited session on ABC methods, where Richard Everitt presented a way of mixing exact approximation with ABC and synthetic likelihood (Wood, *Nature*) approximations. The resulting MAVIS algorithm is not out yet. The second speaker was Ollie Ratman, who spoke on his accurate ABC that I have discussed many times here. And Jean-Michel Marin managed to drive from Montpelier, just in time to deliver his talk on our various explorations of the ABC model choice problem.

**A**fter a quick raclette at “home”, we headed back to the second poster session, where I had enough of a clear mind and not too much of a headache (!) to have several interesting discussions, incl. a new parallelisation suggested by Ben Calderhead, the sticky Metropolis algorithm of Luca Martino, the airport management video of Jegar Pitchforth, the mixture of Dirichlet distributions for extremes by Anne Sabourin, not mentioning posters from Warwick or Paris. At the end of the evening I walked back to my apartment with the Blossom skis we had brought in the morning to attract registrations for the ski race: not enough to make up for the amount charged by the ski school. Too bad, especially given Anto’s efforts to get this amazing sponsoring!

## JSM2014, Boston

Posted in pictures, Statistics, Travel, University life with tags ABC, Boston, IMS, JSM 2014, model selection, random forests, SNPs, summary statistics on December 3, 2013 by xi'an**I** submitted my abstract for JSM2014, just in time! Thanks to Veronika Rockova, now at The Wharton School, for organising this IMS session on *Advances in Model Selection* (Wednesday, 8/6/2014, 8:30)!

itle: |
Automated variable selection for ABC algorithms |

Abstract: |
We discuss here recent advances made in the selection of summaries for approximate Bayesian computation (ABC). In particular, we emphasize the appeal of using machine learning tools such as random forests to build in an automated version summary statistics of a minimum dimension. Conditional to sufficient progress being made in this direction, we will also discuss why and how ABC methods have to be adapted when analyzing large molecular datasets and will present some progress concerning Single Nucleotide Polymorphism (SNP) data. |

Key words: |
Bayesian computation, ABC, SNP, model selection |

## R.I.P. Emile…

Posted in Mountains, pictures, Running, Statistics, Travel, University life, Wines with tags ABC, ANR, DIYABC, EMILE, INLA, Languedoc wines, Mauguio, MCMC, Montpellier, Mortiès, Pic Saint Loup, SNPs on July 5, 2013 by xi'an**I** was thus in Montpellier for a few days, working with Jean-Michel Marin and attending the very final meeting of our ANR research group called Emile… The very same group that introduced us to ABC in 2005. We had a great time, discussing about DIYABC.2, ABC for SNPs, and other extensions with our friend Arnaud Estoup, enjoying an outdoor dinner on the slopes of Pic Saint-Loup and a wine tasting on the way there, listening to ecological modelling this morning from elephant tracking [using INLA] to shell decoration in snails [using massive MCMC], running around Crès lake in the warm rain, and barely escaping the Tour de France on my way to the airport!!!