Archive for SQMC

Introduction to Sequential Monte Carlo [book review]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , on June 8, 2021 by xi'an

[Warning: Due to many CoI, from Nicolas being a former PhD student of mine, to his being a current colleague at CREST, to Omiros being co-deputy-editor for Biometrika, this review will not be part of my CHANCE book reviews.]

My friends Nicolas Chopin and Omiros Papaspiliopoulos wrote in 2020 An Introduction to Sequential Monte Carlo (Springer) that took several years to achieve and which I find remarkably coherent in its unified presentation. Particles filters and more broadly sequential Monte Carlo have expended considerably in the last 25 years and I find it difficult to keep track of the main advances given the expansive and heterogeneous literature. The book is also quite careful in its mathematical treatment of the concepts and, while the Feynman-Kac formalism is somewhat scary, it provides a careful introduction to the sampling techniques relating to state-space models and to their asymptotic validation. As an introduction it does not go to the same depths as Pierre Del Moral’s 2004 book or our 2005 book (Cappé et al.). But it also proposes a unified treatment of the most recent developments, including SMC² and ABC-SMC. There is even a chapter on sequential quasi-Monte Carlo, naturally connected to Mathieu Gerber’s and Nicolas Chopin’s 2015 Read Paper. Another significant feature is the articulation of the practical part around a massive Python package called particles [what else?!]. While the book is intended as a textbook, and has been used as such at ENSAE and in other places, there are only a few exercises per chapter and they are not necessarily manageable (as Exercise 7.1, the unique exercise for the very short Chapter 7.) The style is highly pedagogical, take for instance Chapter 10 on the various particle filters, with a detailed and separate analysis of the input, algorithm, and output of each of these. Examples are only strategically used when comparing methods or illustrating convergence. While the MCMC chapter (Chapter 15) is surprisingly small, it is actually an introducing of the massive chapter on particle MCMC (and a teaser for an incoming Papaspiloulos, Roberts and Tweedie, a slow-cooking dish that has now been baking for quite a while!).