Archive for statistical inference

One statistical analysis must not rule them all

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on May 31, 2022 by xi'an

E.J. (Wagenmakers), along with co-authors, published a (long) comment in Nature, rewarded by a illustration by David Parkins! About the over-confidence often carried by (single) statistical analyses, meaning a call for the comparison below different datasets, different models, and different techniques (beyond different teams).

“To gauge the robustness of their conclusions, researchers should subject the data to multiple analyses; ideally, these would be carried out by one or more independent teams. We understand that this is a big shift in how science is done, that appropriate infrastructure and incentives are not yet in place, and that many researchers will recoil at the idea as being burdensome and impractical. Nonetheless, we argue that the benefits of broader, more-diverse approaches to statistical inference could be so consequential that it is imperative to consider how they might be made routine.”

If COVID-19 had one impact on the general public perception of modelling, it is that, to quote Alfred Korzybski, the map is not the territory, i.e., the model is not reality. Hence, the outcome of a model-based analysis, including its uncertainty assessment, depends on the chosen model. And does not include the bias due to this choice. Which is much more complex to ascertain in a sort of things that we do not know we do not know paradigm…. In other words, while we know that all models are wrong, we do not know how much wrong each model is. Except that they disagree with one another in experiments like the above.

“Less understood is how restricting analyses to a single technique effectively blinds researchers to an important aspect of uncertainty, making results seem more precise than they really are.”

The difficulty with E.J.’s proposal is to set a framework for a range of statistical analyses. To which extent should one seek a different model or a different analysis? How can we weight the multiple analyses? Which probabilistic meaning can we attach to the uncertainty between analyses? How quickly will opportunistic researchers learn to play against the house and pretend at objectivity? Isn’t statistical inference already equipped to handle multiple models?

likelihood inference with no MLE

Posted in Books, R, Statistics with tags , , , , on July 29, 2021 by xi'an

“In a regular full discrete exponential family, the MLE for the canonical parameter does not exist when the observed value of the canonical statistic lies on the boundary of its convex support.”

Daniel Eck and Charlie Geyer just published an interesting and intriguing paper on running efficient inference for discrete exponential families when the MLE does not exist.  As for instance in the case of a complete separation between 0’s and 1’s in a logistic regression model. Or more generally, when the estimated Fisher information matrix is singular. Not mentioning the Bayesian version, which remains a form of likelihood inference. The construction is based on a MLE that exists on an extended model, a notion which I had not heard previously. This model is defined as a limit of likelihood values

\lim_{n\to\infty} \ell(\theta_n|x) = \sup_\theta \ell(\theta|x) := h(x)

called the MLE distribution. Which remains a mystery to me, to some extent. Especially when this distribution is completely degenerate. Examples provided within the paper alas do not help, as they mostly serve as illustration for the associated rcdd R package. Intriguing, indeed!


babbage in, babbage out?!

Posted in Books, Kids, Statistics with tags , , , , , , on May 25, 2020 by xi'an

When checking for the origin of “garbage in, garbage out” on Wikipedia, I came upon this citation from Charles Babbage:

“On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?” … I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.”

following earlier quotes from him on this ‘Og.

absurd prices on Amazon

Posted in Statistics with tags , , , on November 30, 2019 by xi'an

severe testing : beyond Statistics wars?!

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , on January 7, 2019 by xi'an

A timely start to my reading Deborah Mayo’s [properly printed] Statistical Inference as Severe Testing (How to get beyond the Statistics Wars) on the Armistice Day, as it seems to call for just this, an armistice! And the opportunity of a long flight to Oaxaca in addition… However, this was only the start and it took me several further weeks to peruse seriously enough the book (SIST) before writing the (light) comments below. (Receiving a free copy from CUP and then a second one directly from Deborah after I mentioned the severe sabotage!)

Indeed, I sort of expected a different content when taking the subtitle How to get beyond the Statistics Wars at face value. But on the opposite the book is actually very severely attacking anything not in the line of the Cox-Mayo severe testing line. Mostly Bayesian approach(es) to the issue! For instance, Jim Berger’s construct of his reconciliation between Fisher, Neyman, and Jeffreys is surgically deconstructed over five pages and exposed as a Bayesian ploy. Similarly, the warnings from Dennis Lindley and other Bayesians that the p-value attached with the Higgs boson experiment are not probabilities that the particle does not exist are met with ridicule. (Another go at Jim’s Objective Bayes credentials is found in the squared myth of objectivity chapter. Maybe more strongly than against staunch subjectivists like Jay Kadane. And yet another go when criticising the Berger and Sellke 1987 lower bound results. Which even extends to Vale Johnson’s UMP-type Bayesian tests.)

“Inference should provide posterior probabilities, final degrees of support, belief, probability (…) not provided by Bayes factors.” (p.443)

Another subtitle of the book could have been testing in Flatland given the limited scope of the models considered with one or at best two parameters and almost always a Normal setting. I have no idea whatsoever how the severity principle would apply in more complex models, with e.g. numerous nuisance parameters. By sticking to the simplest possible models, the book can carry on with the optimality concepts of the early days, like sufficiency (p.147) and and monotonicity and uniformly most powerful procedures, which only make sense in a tiny universe.

“The estimate is really a hypothesis about the value of the parameter.  The same data warrant the hypothesis constructed!” (p.92)

There is an entire section on the lack of difference between confidence intervals and the dual acceptance regions, although the lack of unicity in defining either of them should come as a bother. Especially outside Flatland. Actually the following section, from p.193 onward, reminds me of fiducial arguments, the more because Schweder and Hjort are cited there. (With a curve like Fig. 3.3. operating like a cdf on the parameter μ but no dominating measure!)

“The Fisher-Neyman dispute is pathological: there’s no disinterring the truth of the matter (…) Fisher grew to renounce performance goals he himself had held when it was found that fiducial solutions disagreed with them.”(p.390)

Similarly the chapter on the “myth of the “the myth of objectivity””(p.221) is mostly and predictably targeting Bayesian arguments. The dismissal of Frank Lad’s arguments for subjectivity ends up [or down] with a rather cheap that it “may actually reflect their inability to do the math” (p.228). [CoI: I once enjoyed a fantastic dinner cooked by Frank in Christchurch!] And the dismissal of loss function requirements in Ziliak and McCloskey is similarly terse, if reminding me of Aris Spanos’ own arguments against decision theory. (And the arguments about the Jeffreys-Lindley paradox as well.)

“It’s not clear how much of the current Bayesian revolution is obviously Bayesian.” (p.405)

The section (Tour IV) on model uncertainty (or against “all models are wrong”) is somewhat limited in that it is unclear what constitutes an adequate (if wrong) model. And calling for the CLT cavalry as backup (p.299) is not particularly convincing.

It is not that everything is controversial in SIST (!) and I found agreement in many (isolated) statements. Especially in the early chapters. Another interesting point made in the book is to question whether or not the likelihood principle at all makes sense within a testing setting. When two models (rather than a point null hypothesis) are X-examined, it is a rare occurrence that the likelihood factorises any further than the invariance by permutation of iid observations. Which reminded me of our earlier warning on the dangers of running ABC for model choice based on (model specific) sufficient statistics. Plus a nice sprinkling of historical anecdotes, esp. about Neyman’s life, from Poland, to Britain, to California, with some time in Paris to attend Borel’s and Lebesgue’s lectures. Which is used as a background for a play involving Bertrand, Borel, Neyman and (Egon) Pearson. Under the title “Les Miserables Citations” [pardon my French but it should be Les Misérables if Hugo is involved! Or maybe les gilets jaunes…] I also enjoyed the sections on reuniting Neyman-Pearson with Fisher, while appreciating that Deborah Mayo wants to stay away from the “minefields” of fiducial inference. With, mot interestingly, Neyman himself trying in 1956 to convince Fisher of the fallacy of the duality between frequentist and fiducial statements (p.390). Wisely quoting Nancy Reid at BFF4 stating the unclear state of affair on confidence distributions. And the final pages reawakened an impression I had at an earlier stage of the book, namely that the ABC interpretation on Bayesian inference in Rubin (1984) could come closer to Deborah Mayo’s quest for comparative inference (p.441) than she thinks, in that producing parameters producing pseudo-observations agreeing with the actual observations is an “ability to test accordance with a single model or hypothesis”.

“Although most Bayesians these days disavow classic subjective Bayesian foundations, even the most hard-nosed. “we’re not squishy” Bayesian retain the view that a prior distribution is an important if not the best way to bring in background information.” (p.413)

A special mention to Einstein’s cafe (p.156), which reminded me of this picture of Einstein’s relative Cafe I took while staying in Melbourne in 2016… (Not to be confused with the Markov bar in the same city.) And a fairly minor concern that I find myself quoted in the sections priors: a gallimaufry (!) and… Bad faith Bayesianism (!!), with the above qualification. Although I later reappear as a pragmatic Bayesian (p.428), although a priori as a counter-example!

%d bloggers like this: