**A**mong the many papers published in this special issue of TAS on statistical significance or lack thereof, there is a paper I had already read before (besides ours!), namely the paper by Jonty Rougier (U of Bristol, hence the picture) on connecting p-values, likelihood ratio, and Bayes factors. Jonty starts from the notion that the p-value is induced by a transform, summary, statistic of the sample, t(x), the larger this t(x), the less likely the null hypothesis, with density f⁰(x), to create an embedding model by exponential tilting, namely the exponential family with dominating measure f⁰, and natural statistic, t(x), and a positive parameter θ. In this embedding model, a Bayes factor can be derived from any prior on θ and the p-value satisfies an interesting double inequality, namely that it is less than the likelihood ratio, itself lower than any (other) Bayes factor. One novel aspect from my perspective is that I had thought up to now that this inequality only holds for one-dimensional problems, but there is no constraint here on the dimension of the data x. A remark I presumably made to Jonty on the first version of the paper is that the p-value itself remains invariant under a bijective increasing transform of the summary t(.). This means that there exists an infinity of such embedding families and that the bound remains true over all such families, although the value of this minimum is beyond my reach (could it be the p-value itself?!). This point is also clear in the justification of the analysis thanks to the Pitman-Koopman lemma. Another remark is that the perspective can be inverted in a more realistic setting when a genuine alternative model M¹ is considered and a genuine likelihood ratio is available. In that case the Bayes factor remains smaller than the likelihood ratio, itself larger than the p-value induced by the likelihood ratio statistic. Or its log. The induced embedded exponential tilting is then a geometric mixture of the null and of the locally optimal member of the alternative. I wonder if there is a parameterisation of this likelihood ratio into a p-value that would turn it into a uniform variate (under the null). Presumably not. While the approach remains firmly entrenched within the realm of p-values and Bayes factors, this exploration of a natural embedding of the original p-value is definitely worth mentioning in a class on the topic! (One typo though, namely that the Bayes factor is mentioned to be lower than one, which is incorrect.)

## Archive for statistical significance

## aftermaths of retiring significance

Posted in Books, pictures, Statistics, University life with tags Andrew Gelman, Nature, NPR, statistical significance, The Guardian, the week after, University of Amsterdam on April 10, 2019 by xi'an

**B**eyond mentions in the general press of the retire significance paper, as in Retraction Watch, Bloomberg, The Guardian, Vox, and NPR, not to mention the large number of comments on Andrew’s blog, and Deborah Mayo’s tribune on a ban on free speech (!), Nature of “the week after” contained three letters from Ioannidis, calling for more stringent thresholds, Johnson, essentially if unclearly stating the same, and my friends from Amsterdam, Alexander Ly and E.J. Wagenmakers, along with Julia Haaf, getting back to the Great Old Ones, to defend the usefulness of testing versus estimation.

## abandon ship [value]!!!

Posted in Books, Statistics, University life with tags Andrew Gelman, hypothesis testing, Nature, p-values, special issue, Statistical decision theory, statistical significance, The American Statistician, threshold, uncertainty quantification on March 22, 2019 by xi'an**T**he Abandon Statistical Significance paper we wrote with “. A 400 page special issue with 43 papers available on-line and open-source! Food for thought likely to be discussed further here (and elsewhere). The paper and the ideas within have been discussed quite a lot on Andrew’s blog and I will not repeat them here, simply quoting from the conclusion of the paper

In this article, we have proposed to abandon statistical significance and offered recommendations for how this can be implemented in the scientific publication process as well as in statistical decision making more broadly. We reiterate that we have no desire to “ban” p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors.

Which also introduced in a comment by Valentin Amrhein, Sander Greenland, and Blake McShane published in Nature today (and supported by 800+ signatures). Again discussed on Andrew’s blog.

## How many subjects? [not a book review]

Posted in Books, pictures, Statistics with tags Brett Kavanaugh, Christine Blasey, power, statistical significance, statistical tests, tests, textbook on September 24, 2018 by xi'an## p-values and decision-making [reposted]

Posted in Books, Statistics, University life with tags 0.005, 0.05, books, decision theory, Dennis Lindley, hypothesis testing, Nicholas T. Longford, p-values, Robert Matthews, Significance, statistical significance on August 30, 2017 by xi'an*I**n a letter to Significance about a review of Robert Matthews’s book, Chancing it, Nicholas Longford recalls a few basic facts about p-values and decision-making earlier made by Dennis Lindley in Making Decisions. Here are some excerpts, worth repeating in the light of the 0.005 proposal:*

“A statement of significance based on a p-value is a verdict that is oblivious to consequences. In my view, this disqualifies hypothesis testing, and p-values with it, from making rational decisions. Of course, the p-value could be supplemented by considerations of these consequences, although this is rarely done in a transparent manner. However, the two-step procedure of calculating the p-value and then incorporating the consequences is unlikely to match in its integrity the single-stage procedure in which we compare the expected losses associated with the two contemplated options.”

“At present, [Lindley’s] decision-theoretical approach is difficult to implement in practice. This is not because of any computational complexity or some problematic assumptions, but because of our collective reluctance to inquire about the consequences – about our clients’ priorities, remits and value judgements. Instead, we promote a culture of “objective” analysis, epitomised by the 5% threshold in significance testing. It corresponds to a particular balance of consequences, which may or may not mirror our clients’ perspective.”

“The p-value and statistical significance are at best half-baked products in the process of making decisions, and a distraction at worst, because the ultimate conclusion of a statistical analysis should be a proposal for what to do next in our clients’ or our own research, business, production or some other agenda. Let’s reflect and admit how frequently we abuse hypothesis testing by adopting (sometimes by stealth) the null hypothesis when we fail to reject it, and therefore do so without any evidence to support it. How frequently we report, or are party to reporting, the results of hypothesis tests selectively. The problem is not with our failing to adhere to the convoluted strictures of a popular method, but with the method itself. In the 1950s, it was a great statistical invention, and its popularisation later on a great scientific success. Alas, decades later, it is rather out of date, like the steam engine. It is poorly suited to the demands of modern science, business, and society in general, in which the budget and pocketbook are important factors.”

## not an ASA’s statement on p-values

Posted in Books, Kids, Statistics, University life with tags ASA, p-values, statistical significance, testing of hypotheses, Vladimir Vovk on March 18, 2016 by xi'an

**T**his may be a coincidence, but a few days after the ASA statement got published, Yuri Gurevich and Vladimir Vovk arXived a note on the Fundamentals of p-values. Which actually does not contribute to the debate. The paper is written in a Q&A manner. And defines a sort of peculiar logic related with [some] p-values. A second and more general paper is in the making, which may shed more light on the potential appeal of this formalism…