Archive for Stephen Wolfram

“a rare blend of monster raving egomania and utter batshit insanity”

Posted in Books, pictures, University life with tags , , , , , , , , , , , , on November 12, 2020 by xi'an

“I don’t object to speculation or radical proposals, even to radical, grandiose speculative proposals; I just want there to be arguments to back them up, reasons to take them seriously. I don’t object to scientists displaying personality in their work, or staking out positions in vigorous opposition to much of the opinion in their field, and engaging in heated debate; I do object to ignoring criticism and claiming credit for commonplaces, especially before popular audiences who won’t pick up on it.”

A recent post by Andrew on Stephen Wolfram’s (mega) egomania led to a much older post by Cosma Shalizi reviewing the perfectly insane 5.57 pounds of a New Kind of Science. An exhilarating review, trashing the pretentious self-celebration of a void paradigm shift advanced by Wolfram and its abyssal lack of academic rigour, showing anew that a book recommended by Bill Gates is not necessarily a great book. (Note that A New Kind of Science is available for free on-line.)

“Let me try to sum up. On the one hand, we have a large number of true but commonplace ideas, especially about how simple rules can lead to complex outcomes, and about the virtues of toy models. On the other hand, we have a large mass of dubious speculations (many of them also unoriginal). We have, finally, a single new result of mathematical importance, which is not actually the author’s. Everything is presented as the inspired fruit of a lonely genius, delivering startling insights in isolation from a blinkered and philistine scientific community.”

When I bought this monstrous book (eons before I started the ‘Og!), I did not get much further into it than the first series of cellular automata screen copies that fill page after page. And quickly if carefully dropped it by my office door in the corridor. Where it stayed for a few days until one of my colleagues most politely asked me if he could borrow it. (This happens all the time: once I have read or given up on a book I do not imagine reopening again, I put it in the coffee room or, for the least recommended books, on the floor by my door and almost invariably whoever is interested will first ask me for permission. Which is very considerate and leads to pleasant discussions on the said books. Only recently did the library set shelves outside its doors for dropping books free for the taking, but even there I sometimes get colleagues wondering [rightly] if I was the one abandoning there a particular book.)

“I am going to keep my copy of A New Kind of Science, sitting on the same shelf as Atlantis in Wisconsin, The Cosmic Forces of Mu, Of Grammatology, and the people who think the golden ratio explains the universe.”

In case the review is not enough to lighten up your day, in these gloomy times, there is a wide collection of them from the 2000’s, although most of the links have turned obsolete. (The Maths Reviews review has not.) As presumably this very post about a eighteen-years-old non-event…

17 equations that changed the World (#2)

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , , on October 16, 2012 by xi'an

(continuation of the book review)

If you placed your finger at that point, the two halves of the string would still be able to vibrate in the sin 2x pattern, but not in the sin x one. This explains the Pythagorean discovery that a string half as long produced a note one octave higher.” (p.143)

The following chapters are all about Physics: the wave equation, Fourier’s transform and the heat equation, Navier-Stokes’ equation(s), Maxwell’s equation(s)—as in  The universe in zero word—, the second law of thermodynamics, E=mc² (of course!), and Schrödinger’s equation. I won’t go so much into details for those chapters, even though they are remarkably written. For instance, the chapter on waves made me understand the notion of harmonics in a much more intuitive and lasting way than previous readings. (This chapter 8 also mentions the “English mathematician Harold Jeffreys“, while Jeffreys was primarily a geophysicist. And a Bayesian statistician with major impact on the field, his Theory of Probability arguably being the first modern Bayesian book. Interestingly, Jeffreys also was the first one to find approximations to the Schrödinger’s equation, however he is not mentioned in this later chapter.) Chapter 9 mentions the heat equation but is truly about Fourier’s transform which he uses as a tool and later became a universal technique. It also covers Lebesgue’s integration theory, wavelets, and JPEG compression. Chapter 10 on Navier-Stokes’ equation also mentions climate sciences, where it takes a (reasonable) stand. Chapter 11 on Maxwell’s equations is a short introduction to electromagnetism, with radio the obvious illustration. (Maybe not the best chapter in the book.) Continue reading