**T**oday, Veronika Rockova is giving a webinar on her paper with Tetsuya Kaji Metropolis-Hastings via classification. at the One World ABC seminar, at 11.30am UK time. (Which was also presented at the Oxford Stats seminar last Feb.) Please register if not already a member of the 1W ABC mailing list.

## Archive for summary statistics

## Metropolis-Hastings via Classification [One World ABC seminar]

Posted in Statistics, University life with tags ABC, ABC consistency, Chicago, Chicago Booth School of Business, classification, deep learning, discriminant analysis, GANs, logistic regression, Metropolis-Hastings algorithm, seminar, summary statistics, synthetic likelihood, University of Oxford, University of Warwick, webinar on May 27, 2021 by xi'an## ABC on brain networks

Posted in Books, pictures, Statistics, University life with tags ABC, ABC model choice, Approximate Bayesian computation, Bayes factor, Bayesian model choice, brain model, brains, copula, evidence, network, Parkinson, research gate, summary statistics, tolerance on April 16, 2021 by xi'an**R**esearch Gate sent me an automated email pointing out a recent paper citing some of our ABC papers. The paper is written by Timothy West et al., neuroscientists in the UK, comparing models of Parkinsonian circuit dynamics. Using SMC-ABC. One novelty is the update of the tolerance by a fixed difference, unless the acceptance rate is too low, in which case the tolerance is reinitialised to a starting value.

“(…) the proposal density P(θ|D⁰) is formed from the accepted parameters sets. We use a density approximation to the marginals and a copula for the joint (…) [i.e.] a nonparametric estimation of the marginal densities overeach parameter [and] the t-copula(…) Data are transformed to the copula scale (unit-square) using the kernel density estimator of the cumulative distribution function of each parameter and then transformed to the joint space with the t-copula.”

The construct of the proposal is quite involved, as described in the above quote. The model choice approach is standard (à la Grelaud et al.) but uses the median distance as a tolerance.

“(…) test whether the ABC estimator will: a) yield parameter estimates that are unique to the data fromwhich they have been optimized; and b) yield consistent estimation of parameters across multiple instances (…) test the face validity of the model comparison framework (…) [and] demonstrate the scalability of the optimization and model comparison framework.”

The paper runs a fairly extensive test of the above features, concluding that “the ABC optimized posteriors are consistent across multiple initializations and that the output is determined by differences in the underlying model generating the given data.” Concerning model comparison, the authors mix the ABC Bayes factor with a post-hoc analysis of divergence to discriminate against overfitting. And mention the potential impact of the summary statistics in the conclusion section, albeit briefly, and the remark that the statistics were “sufficient to recover known parameters” is not supporting their use for model comparison. The additional criticism of sampling strategies for approximating Bayes factors is somewhat irrelevant, the main issue with ABC model choice being a change of magnitude in the evidence.

“ABC has established itself as a key tool for parameter estimation in systems biology (…) but is yet to see wide adoption in systems neuroscience. It is known that ABC will not perform well under certain conditions (Sunnåker et al., 2013). Specifically, it has been shown that the

simplest form of ABC algorithm based upon an rejection-sampling approach is inefficient in the case where the prior densities lie far from the true posterior (…) This motivates the use of neurobiologically grounded models over phenomenological models where often the ranges of potential parameter values are unknown.”

## likelihood-free and summary-free?

Posted in Books, Mountains, pictures, Statistics, Travel with tags ABC, arXiv, Australia, Cramèr-von Mises distance, curse of dimensionality, energy, Gaussian mixture, indirect inference, information, kernel density estimator, likelihood-free methods, mean discrepancy, summary statistics, Wasserstein distance on March 30, 2021 by xi'an**M**y friends and coauthors Chris Drovandi and David Frazier have recently arXived a paper entitled *A comparison of likelihood-free methods with and without summary statistics*. In which they indeed compare these two perspectives on approximate Bayesian methods like ABC and Bayesian synthetic likelihoods.

“A criticism of summary statistic based approaches is that their choice is oftenad hocand there will generally be an inherent loss of information.”

In ABC methods, the recourse to a summary statistic is often advocated as a “necessary evil” against the greater evil of the curse of dimension, paradoxically providing a faster convergence of the ABC approximation (Fearnhead & Liu, 2018). The authors propose a somewhat generic selection of summary statistics based on [my undergrad mentors!] Gouriéroux’s and Monfort’s indirect inference, using a mixture of Gaussians as their auxiliary model. Summary-free solutions, as in our Wasserstein papers, rely on distances between distributions, hence are functional distances, that can be seen as dimension-free as well (or criticised as infinite dimensional). Chris and David consider energy distances (which sound very much like standard distances, except for averaging over all permutations), maximum mean discrepancy as in Gretton et al. (2012), Cramèr-von Mises distances, and Kullback-Leibler divergences estimated via one-nearest-neighbour formulas, for a univariate sample. I am not aware of any degree of theoretical exploration of these functional approaches towards the precise speed of convergence of the ABC approximation…

“We found that at least one of the full data approaches was competitive with or outperforms ABC with summary statistics across all examples.”

The main part of the paper, besides a survey of the existing solutions, is to compare the performances of these over a few chosen (univariate) examples, with the exact posterior as the golden standard. In the g & k model, the Pima Indian benchmark of ABC studies!, Cramèr does somewhat better. While it does much worse in an M/G/1 example (where Wasserstein does better, and similarly for a stereological extremes example of Bortot et al., 2007). An ordering inversed again for a toad movement model I had not seen before. While the usual provision applies, namely that this is a simulation study on unidimensional data and a small number of parameters, the design of the four comparison experiments is very careful, eliminating versions that are either too costly or too divergence, although this could be potentially criticised for being unrealistic (i.e., when the true posterior is unknown). The computing time is roughly the same across methods, which essentially remove the call to kernel based approximations of the likelihood. Another point of interest is that the distance methods are significantly impacted by transforms on the data, which should not be so for intrinsic distances! Demonstrating the distances are not intrinsic…

## Metropolis-Hastings via classification

Posted in pictures, Statistics, Travel, University life with tags ABC, ABC consistency, Chicago, Chicago Booth School of Business, deep learning, discriminant analysis, GANs, logistic regression, seminar, summary statistics, synthetic likelihood, University of Oxford, webinar, winter running on February 23, 2021 by xi'an**V**eronicka Rockova (from Chicago Booth) gave a talk on this theme at the Oxford Stats seminar this afternoon. Starting with a survey of ABC, synthetic likelihoods, and pseudo-marginals, to motivate her approach via GANs, learning an approximation of the likelihood from the GAN discriminator. Her explanation for the GAN type estimate was crystal clear and made me wonder at the connection with Geyer’s 1994 logistic estimator of the likelihood (a form of discriminator with a fixed generator). She also expressed the ABC approximation hence created as the actual posterior times an exponential tilt. Which she proved is of order 1/n. And that a random variant of the algorithm (where the shift is averaged) is unbiased. Most interestingly requiring no calibration and no tolerance. Except indirectly when building the discriminator. And no summary statistic. Noteworthy tension between correct shape and correct location.

## improving synthetic likelihood

Posted in Books, Statistics, University life with tags ABC, approximate Bayesian inference, Bayesian synthetic likelihood, Brisbane, MA(p) model, One World ABC Seminar, QUT, summary statistics, webinar on July 9, 2020 by xi'an**C**hris Drovandi gave an after-dinner [QUT time!] talk for the One World ABC webinar on a recent paper he wrote with Jacob Proddle, Scott Sisson and David Frazier. Using a regular MCMC step on a synthetic likelihood approximation to the posterior. Or a (simulation based) unbiased estimator of it.

By evaluating the variance of the log-likelihood estimator, the authors show that the number of simulations n need scale like n²d² to keep the variance under control. And suggest PCA decorrelation of the summary statistic components as a mean to reduce the variance since it then scales as n²d. Rather idly, I wonder at the final relevance of precisely estimating the (synthetic) likelihood when considering it is not the true likelihood and when the n² part seems more damning. Moving from d² to d seems directly related to the estimation of a full correlation matrix for the Normal synthetic distribution of the summary statistic versus the estimation of a diagonal matrix. The usual complaint that performances highly depend on the choice of the summary statistic also applies here, in particular when its dimension is much larger than the dimension d of the parameter (as in the MA example). Although this does not seem to impact the scale of the variance.