Archive for synthetic data

inference with Wasserstein distance

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on January 23, 2017 by xi'an

Today, Pierre Jacob posted on arXiv a paper of ours on the use of the Wasserstein distance in statistical inference, which main focus is exploiting this distance to create an automated measure of discrepancy for ABC. Which is why the full title is Inference in generative models using the Wasserstein distance. Generative obviously standing for the case when a model can be generated from but cannot be associated with a closed-form likelihood. We had all together discussed this notion when I visited Harvard and Pierre last March, with much excitement. (While I have not contributed much more than that round of discussions and ideas to the paper, the authors kindly included me!) The paper contains theoretical results for the consistency of statistical inference based on those distances, as well as computational on how the computation of these distances is practically feasible and on how the Hilbert space-filling curve used in sequential quasi-Monte Carlo can help. The notion further extends to dependent data via delay reconstruction and residual reconstruction techniques (as we did for some models in our empirical likelihood BCel paper). I am quite enthusiastic about this approach and look forward discussing it at the 17w5015 BIRS ABC workshop, next month!