**W**ith Grégoire Clarté, Robin Ryder and Julien Stoehr, all from Paris-Dauphine, we have just arXived a paper on the specifics of ABC-Gibbs, which is a version of ABC where the generic ABC accept-reject step is replaced by a sequence of n conditional ABC accept-reject steps, each aiming at an ABC version of a conditional distribution extracted from the joint and intractable target. Hence an ABC version of the standard Gibbs sampler. What makes it so special is that each conditional can (and should) be conditioning on a different statistic in order to decrease the dimension of this statistic, ideally down to the dimension of the corresponding component of the parameter. This successfully bypasses the curse of dimensionality but immediately meets with two difficulties. The first one is that the resulting sequence of conditionals is not coherent, since it is not a Gibbs sampler on the ABC target. The conditionals are thus incompatible and therefore convergence of the associated Markov chain becomes an issue. We produce sufficient conditions for the Gibbs sampler to converge to a stationary distribution using incompatible conditionals. The second problem is then that, provided it exists, the limiting and also intractable distribution does not enjoy a Bayesian interpretation, hence may fail to be justified from an inferential viewpoint. We however succeed in producing a version of ABC-Gibbs in a hierarchical model where the limiting distribution can be explicited and even better can be weighted towards recovering the original target. (At least with limiting zero tolerance.)

## Archive for tolerance

## ABC with Gibbs steps

Posted in Statistics with tags ABC, ABC-Gibbs, Approximate Bayesian computation, Bayesian inference, bois de Boulogne, compatible conditional distributions, contraction, convergence, ergodicity, France, Gibbs sampler, hierarchical Bayesian modelling, incompatible conditionals, La Défense, Paris, stationarity, tolerance, Université Paris Dauphine on June 3, 2019 by xi'an## asymptotics of synthetic likelihood [a reply from the authors]

Posted in Books, Statistics, University life with tags ABC, approximate Bayesian inference, Bayesian inference, Bayesian synthetic likelihood, central limit theorem, effective sample size, frequentist confidence, local regression, misspecification, pseudo-marginal MCMC, response, tolerance, uncertainty quantification on March 19, 2019 by xi'an*[Here is a reply from David, Chris, and Robert on my earlier comments, highlighting some points I had missed or misunderstood.]*

Dear Christian

Thanks for your interest in our synthetic likelihood paper and the thoughtful comments you wrote about it on your blog. We’d like to respond to the comments to avoid some misconceptions.

Your first claim is that we don’t account for the differing number of simulation draws required for each parameter proposal in ABC and synthetic likelihood. This doesn’t seem correct, see the discussion below Lemma 4 at the bottom of page 12. The comparison between methods is on the basis of effective sample size per model simulation.

As you say, in the comparison of ABC and synthetic likelihood, we consider the ABC tolerance \epsilon and the number of simulations per likelihood estimate M in synthetic likelihood as functions of n. Then for tuning parameter choices that result in the same uncertainty quantification asymptotically (and the same asymptotically as the true posterior given the summary statistic) we can look at the effective sample size per model simulation. Your objection here seems to be that even though uncertainty quantification is similar for large n, for a finite n the uncertainty quantification may differ. This is true, but similar arguments can be directed at almost any asymptotic analysis, so this doesn’t seem a serious objection to us at least. We don’t find it surprising that the strong synthetic likelihood assumptions, when accurate, give you something extra in terms of computational efficiency.

We think mixing up the synthetic likelihood/ABC comparison with the comparison between correctly specified and misspecified covariance in Bayesian synthetic likelihood is a bit unfortunate, since these situations are quite different. The first involves correct uncertainty quantification asymptotically for both methods. Only a very committed reader who looked at our paper in detail would understand what you say here. The question we are asking with the misspecified covariance is the following. If the usual Bayesian synthetic likelihood analysis is too much for our computational budget, can something still be done to quantify uncertainty? We think the answer is yes, and with the misspecified covariance we can reduce the computational requirements by an order of magnitude, but with an appropriate cost statistically speaking. The analyses with misspecified covariance give valid frequentist confidence regions asymptotically, so this may still be useful if it is all that can be done. The examples as you say show something of the nature of the trade-off involved.

We aren’t quite sure what you mean when you are puzzled about why we can avoid having M to be O(√n). Note that because of the way the summary statistics satisfy a central limit theorem, elements of the covariance matrix of S are already O(1/n), and so, for example, in estimating μ(θ) as an average of M simulations for S, the elements of the covariance matrix of the estimator of μ(θ) are O(1/(Mn)). Similar remarks apply to estimation of Σ(θ). I’m not sure whether that gets to the heart of what you are asking here or not.

In our email discussion you mention the fact that if M increases with n, then the computational burden of a single likelihood approximation and hence generating a single parameter sample also increases with n. This is true, but unavoidable if you want exact uncertainty quantification asymptotically, and M can be allowed to increase with n at any rate. With a fixed M there will be some approximation error, which is often small in practice. The situation with vanilla ABC methods will be even worse, in terms of the number of proposals required to generate a single accepted sample, in the case where exact uncertainty quantification is desired asymptotically. As shown in Li and Fearnhead (2018), if regression adjustment is used with ABC and you can find a good proposal in their sense, one can avoid this. For vanilla ABC, if the focus is on point estimation and exact uncertainty quantification is not required, the situation is better. Of course as you show in your nice ABC paper for misspecified models jointly with David Frazier and Juidth Rousseau recently the choice of whether to use regression adjustment can be subtle in the case of misspecification.

In our previous paper Price, Drovandi, Lee and Nott (2018) (which you also reviewed on this blog) we observed that if the summary statistics are exactly normal, then you can sample from the summary statistic posterior exactly with finite M in the synthetic likelihood by using pseudo-marginal ideas together with an unbiased estimate of a normal density due to Ghurye and Olkin (1962). When S satisfies a central limit theorem so that S is increasingly close to normal as n gets large, we conjecture that it is possible to get exact uncertainty quantification asymptotically with fixed M if we use the Ghurye and Olkin estimator, but we have no proof of that yet (if it is true at all).

Thanks again for being interested enough in the paper to comment, much appreciated.

David, Chris, Robert.

## approximate likelihood perspective on ABC

Posted in Books, Statistics, University life with tags ABC, Approximate Bayesian computation, approximate likelihood, curse of dimensionality, g-and-k distributions, Gibbs sampling, IMS, MCqMC 2018, mixed effect models, Potts model, Statistics Surveys, summary statistics, survey, tolerance, winference on December 20, 2018 by xi'an**G**eorge Karabatsos and Fabrizio Leisen have recently published in Statistics Surveys a fairly complete survey on ABC methods [which earlier arXival I had missed]. Listing within an extensive bibliography of 20 pages some twenty-plus earlier reviews on ABC (with further ones in applied domains)!

*“(…) any ABC method (algorithm) can be categorized as either (1) rejection-, (2) kernel-, and (3) coupled ABC; and (4) synthetic-, (5) empirical- and (6) bootstrap-likelihood methods; and can be **combined with classical MC or VI algorithms [and] all 22 reviews of ABC methods have covered rejection and kernel ABC methods, but only three covered synthetic likelihood, one reviewed the empirical likelihood, and none have reviewed coupled ABC and bootstrap likelihood methods.”*

The motivation for using approximate likelihood methods is provided by the examples of g-and-k distributions, although the likelihood can be efficiently derived by numerical means, as shown by Pierre Jacob‘s winference package, of mixed effect linear models, although a completion by the mixed effects themselves is available for Gibbs sampling as in Zeger and Karim (1991), and of the hidden Potts model, which we covered by pre-processing in our 2015 paper with Matt Moores, Chris Drovandi, Kerrie Mengersen. The paper produces a general representation of the approximate likelihood that covers the algorithms listed above as through the table below (where t(.) denotes the summary statistic):

The table looks a wee bit challenging simply because the review includes the synthetic likelihood approach of Wood (2010), which figured preeminently in the 2012 Read Paper discussion but opens the door to all kinds of approximations of the likelihood function, including variational Bayes and non-parametric versions. After a description of the above versions (including a rather ignored coupled version) and the special issue of ABC model choice, the authors expand on the difficulties with running ABC, from multiple tuning issues, to the genuine curse of dimensionality in the parameter (with unnecessary remarks on low-dimension sufficient statistics since they are almost surely inexistent in most realistic settings), to the mis-specified case (on which we are currently working with David Frazier and Judith Rousseau). To conclude, an worthwhile update on ABC and on the side a funny typo from the reference list!

Li, W. and Fearnhead, P. (2018, in press). On the asymptotic efficiency

of approximate Bayesian computation estimators.Biometrikanana-na.

## Approximate Bayesian computation via sufficient dimension reduction

Posted in Statistics, University life with tags ABC, ABC validation, consistency, sufficiency, summary statistics, tolerance on August 26, 2016 by xi'an

“One of our contribution comes from the mathematical analysis of the consequence of conditioning the parameters of interest on consistent statistics and intrinsically inconsistent statistics”

Xiaolong Zhong and Malay Ghosh have just arXived an ABC paper focussing on the convergence of the method. And on the use of sufficient dimension reduction techniques for the construction of summary statistics. I had not heard of this approach before so read the paper with interest. I however regret that the paper does not link with the recent consistency results of Liu and Fearnhead and of Daniel Frazier, Gael Martin, Judith Rousseau and myself. When conditioning upon the MLE [or the posterior mean] as the summary statistic, Theorem 1 states that the Bernstein-von Mises theorem holds, missing a limit in the tolerance ε. And apparently missing conditions on the speed of convergence of this tolerance to zero although the conditioning event involves the true value of the parameter. This makes me wonder at the relevance of the result. The part about partial posteriors and the characterisation of limiting posterior distributions stats with the natural remark that the mean of the summary statistic must identify the whole parameter θ to achieve consistency, a point central to our 2014 JRSS B paper. The authors suggest using a support vector machine to derive the summary statistics, an idea already exploited by Heiko Strathmann et al.. There is no consistency result of relevance for ABC in that second and final part, which ends up rather abruptly. Overall, while the paper contributes to the current reflection on the convergence properties of ABC, the lack of scaling of the tolerance ε calls for further investigations.

## deep learning ABC summary statistics

Posted in Books, Statistics, University life with tags ABC, autocorrelation, deep learning, hidden Markov models, Ising model, neural network, nonparametric probability density estimation, summary statistics, tolerance on October 19, 2015 by xi'an

“The main task of this article is to construct low-dimensional and informative summary statistics for ABC methods.”

**T**he idea in the paper “Learning Summary Statistic for ABC via Deep Neural Network”, arXived a few days ago, is to start from the raw data and build a “deep neural network” (meaning a multiple layer neural network) to provide a non-linear regression of the parameters over the data. (There is a rather militant tone to the justification of the approach, not that unusual with proponents of deep learning approaches, I must add…) Whose calibration never seems an issue. The neural construct is called to produce an estimator (function) of θ, θ(x). Which is then used as the summary statistics. Meaning, if Theorem 1 is to be taken as the proposal, that a different ABC needs to be run for every function of interest. Or, in other words, that the method is not reparameterisation invariant.

The paper claims to achieve the same optimality properties as in Fearnhead and Prangle (2012). These are however moderate optimalities in that they are obtained for the tolerance ε equal to zero. And using the exact posterior expectation as a summary statistic, instead of a non-parametric estimate. And an infinite functional basis in Theorem 2. I thus see little added value in results like Theorem 2 and no real optimality: That the ABC distribution can be arbitrarily close to the exact posterior is not an helpful statement when implementing the method.

The first example in the paper is the posterior distribution associated with the Ising model, which enjoys a sufficient statistic of dimension one. The issue of generating pseudo-data from the Ising model is evacuated by a call to a Gibbs sampler, but remains an intrinsic problem as the convergence of the Gibbs sampler depends on the value of the parameter θ and especially its location wrt the critical point. Both ABC posteriors are shown to be quite close.

The second example is the posterior distribution associated with an MA(2) model, apparently getting into a benchmark in the ABC literature. The comparison between an ABC based on the first two autocorrelations, an ABC based on the semi-automatic solution of Fearnhead and Prangle (2012) [for which collection of summaries?], and the neural network proposal, leads to the dismissal of the semi-automatic solution and the neural net being closest to the exact posterior [with the same tolerance quantile ε for all approaches].

A discussion crucially missing from the paper—from my perspective—is an accounting for size: First, what is the computing cost of fitting and calibrating and storing a neural network for the sole purpose of constructing a summary statistic? Once the neural net is constructed, I would assume most users would see little need in pursuing the experiment any further. (This was also why we stopped at our random forest output rather than using it as a summary statistic.) Second, how do cost and performances evolve as the dimension of the parameter θ grows? I would deem necessary to understand when the method fails. As for instance in latent variable models such as HMMs. Third, how does the size of the sample impact cost and performances? In many realistic cases when ABC applies, it is not possible to use the raw data, given its size, and summary statistics are a given. For such examples, neural networks should be compared with other ABC solutions, using the same reference table.

## importance weighting without importance weights [ABC for bandits?!]

Posted in Books, Statistics, University life with tags ABC, machine learning, multi-armed bandits, tolerance, Zurich on March 27, 2015 by xi'an**I** did not read very far in the recent arXival by Neu and Bartók, but I got the impression that it was a version of ABC for bandit problems where the probabilities behind the bandit arms are not available but can be generated. Since the stopping rule found in the “Recurrence weighting for multi-armed bandits” is the generation of an arm equal to the learner’s draw (p.5). Since there is no tolerance there, the method is exact (“unbiased”). As no reference is made to the ABC literature, this may be after all a mere analogy…

## ABC by population annealing

Posted in Statistics, University life with tags ABC, ABC model choice, ABC-SMC, evidence, marginal likelihood, sequential Monte Carlo, simulated annealing, tempering, tolerance on January 6, 2015 by xi'an**T**he paper “Bayesian Parameter Inference and Model Selection by Population Annealing in System Biology” by Yohei Murakami got published in PLoS One last August but I only became aware of it when ResearchGate pointed it out to me [by mentioning one of our ABC papers was quoted there].

“We are recommended to try a number of annealing schedules to check the influence of the schedules on the simulated data (…) As a whole, the simulations with the posterior parameter ensemble could, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference.”

Population annealing is a notion introduced by Y Iba, the very same IBA who introduced the notion of population Monte Carlo that we studied in subsequent papers. It reproduces the setting found in many particle filter papers of a sequence of (annealed or rather tempered) targets ranging from an easy (i.e., almost flat) target to the genuine target, and of an update of a particle set by MCMC moves and reweighing. I actually have trouble perceiving the difference with other sequential Monte Carlo schemes as those exposed in Del Moral, Doucet and Jasra (2006, Series B). And the same is true of the ABC extension covered in this paper. (Where the annealed intermediate targets correspond to larger tolerances.) This sounds like a traditional ABC-SMC algorithm. Without the adaptive scheme on the tolerance ε found e.g. in Del Moral et al., since the sequence is set in advance. [However, the discussion about the implementation includes the above quote that suggests a vague form of cross-validated tolerance construction]. The approximation of the marginal likelihood also sounds standard, the marginal being approximated by the proportion of accepted pseudo-samples. Or more exactly by the sum of the SMC weights at the end of the annealing simulation. This actually raises several questions: (a) this estimator is always between 0 and 1, while the marginal likelihood is not restricted [but this is due to a missing 1/ε in the likelihood estimate that cancels from both numerator and denominator]; (b) seeing the kernel as a non-parametric estimate of the likelihood led me to wonder why different ε could not be used in different models, in that the pseudo-data used for each model under comparison differs. If we were in a genuine non-parametric setting the bandwidth would be derived from the pseudo-data.

“Thus, Bayesian model selection by population annealing is valid.”

The discussion about the use of ABC population annealing somewhat misses the point of using ABC, which is to approximate the genuine posterior distribution, to wit the above quote: that the ABC Bayes factors favour the correct model in the simulation does not tell anything about the degree of approximation wrt the original Bayes factor. [The issue of non-consistent Bayes factors does not apply here as there is no summary statistic applied to the few observations in the data.] Further, the magnitude of the variability of the values of this Bayes factor as ε varies, from 1.3 to 9.6, mostly indicates that the numerical value is difficult to trust. (I also fail to explain the huge jump in Monte Carlo variability from 0.09 to 1.17 in Table 1.) That this form of ABC-SMC improves upon the basic ABC rejection approach is clear. However it needs to build some self-control to avoid arbitrary calibration steps and reduce the instability of the final estimates.

“The weighting function is set to be large value when the observed data and the simulated data are ‘‘close’’, small value when they are ‘‘distant’’, and constant when they are ‘‘equal’’.”

The above quote is somewhat surprising as the estimated likelihood f(x^{obs}|x^{obs},θ) is naturally constant when x^{obs}=x^{sim}… I also failed to understand how the model intervened in the indicator function used as a default ABC kernel