Archive for tootsie pop

point process-based Monte Carlo

Posted in Books, Kids, Statistics, University life with tags , , , , , on December 3, 2015 by xi'an

Clément Walter from Paris just pointed me to an arXived paper he had very recently gotten accepted for publication in Statistics and Computing. (Congrats!) Because his paper relates to nested sampling. And connects it with rare event simulation via interacting particle systems. And multilevel Monte Carlo. I had missed it when it came out on arXiv last December [as the title was unrelated with nested sampling if not Monte Carlo], but the paper brings fairly interesting new results about an ideal version of nested sampling that is

  1. unbiased when using an infinite number of terms;
  2. always better than the standard Monte Carlo estimator, variance-wise;
  3. connected with an implicit marked Poisson process; and
  4. enjoying a finite variance provided the quantity of interest has an 1+ε moment.

Of course, such results only hold for an ideal version and do not address the issue of the conditional simulations required by nested sampling. (Which has an impact on the computing time as the conditional simulation becomes more and more expensive as the likelihood value increases.) The explanation therein of the approximation of tail probabilities by a Poisson estimate makes the link with deterministic nested sampling much clearer to me. Point 2 above means that the nested sampling estimate always does better than the average of the likelihood values produced by an iid or MCMC simulation from the prior distribution. The paper also borrows from the debiasing approach of Rhee and Glynn (already used by the Russian roulette) to turn truncated versions of the nested sampling estimator into an unbiased estimator, with a limited impact on the variance of the estimator. Truncation is associated with the generation of a geometric stopping time which parameter needs to be optimised. Without a more detailed reading, I am somewhat lost as to this optimisation remains feasible in complex settings… The paper contains an illustration for a Pareto distribution where optimisation and calibration can be conducted quite far. It also re-analyses the Mexican hat example of Skilling (2006), showing that our stopping rule may induce bias.

Random construction of interpolating sets

Posted in Kids, Statistics, University life with tags , , , , on January 5, 2012 by xi'an

One of the many arXiv papers I could not discuss earlier is Huber and Schott’s “Random construction of interpolating sets for high dimensional integration” which relates to their earlier TPA paper at the València meeting. (Paper that we discussed with Nicolas Chopin.) TPA stands for tootsie pop algorithm, The paper is very pleasant to read, just like its predecessor. The principle behind TPA is that the number of steps in the algorithm is Poisson with parameter connected  to  the unknown measure of the inner set:


Therefore, the variance of the estimation is known as well.  This is a significant property of a mathematically elegant solution. As already argued in our earlier discussion, it however seems the paper is defending an integral approximation that sounds far from realistic, in my opinion. Indeed, the TPA method requires as a fundamental item the ability to simulate from a measure μ restricted to a level set A(β). Exact simulation seems close to impossible in any realistic problem. Just as in Skilling (2006)’s nested sampling. Furthermore, the comparison with nested sampling is evacuated rather summarily: that the variance of this alternative cannot be computed “prior to running the algorithm” does not mean it is larger than the one of the TPA method. If the proposal is to become a realistic algorithm, some degree of comparison with the existing should appear in the paper. (A further if minor comment about the introduction is that the reason for picking the relative ideal balance α=0.2031 in the embedded sets is not clear. Not that it really matters in the implementation unless Section 5 on well-balanced sets is connected with this ideal ratio…)

%d bloggers like this: