Archive for train travel

quantum computing reproducibility crisis?

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , on September 16, 2021 by xi'an

While standing in a train to my mother’s house in Brittany, I was catching up on earlier Nature issues and came upon this April issue where, following the retraction of a Nature paper on the topic, Sergey Frolov casts doubt on the possible detection of a new type of quantum particle, the Majorana fermion, whose existence still remains inconclusive. The criticism concentrates on the data analysis of signals where the appearance of a narrow peak should support the hypothesised existence. The article is interesting (to me) as a reflection of someone having published positive, then negative articles on the topic, upon the tendency for authors in the field to cherry-pick experiments where some peaks occur. Among dozens or hundred of experiments where they did not. And calling for open data and more stringent review(er)s on the matter (and others). The arguments in the opinion tribune sound most reasonable but I wonder whether or not other particle physicists share the same concern.

postgraduate open day at Warwick [4 Dec]

Posted in pictures, Statistics, University life with tags , , , , , , , , , , on November 12, 2019 by xi'an

The department of Statistics at the University of Warwick is holding an open day for prospective PhD students on 4 December 2019, starting at 2pm (with free lunch at 1pm). In the Mathematical Sciences Building common room (room MB1.02). The Director of Graduate Studies, Professor Mark Steel, and the PhD admissions tutors Professors Martyn Plummer and Barbel Finkelstadt Rand will give short presentations about what it means to do a PhD, what it means to do it at Warwick, the benefits of a PhD degree, and the application process.

Subsequently there will be an informal meeting, during which students have the possibility to ask questions and find out more about the different PhD opportunities at Warwick Statistics; in fact, we offer a very broad range of possibilities, giving a lot of choice for potential applicants. Current members of staff will be invited to participate, to discuss potential projects.

UK travel expenses will be covered by the Department of Statistics (standard class travel by public transport with pre-booked tickets). Please register if interested in this event.

9 pitfalls of data science [book review]

Posted in Books, Kids, Statistics, Travel, University life with tags , , , , , , , , , , , , , on September 11, 2019 by xi'an

I received The 9 pitfalls of data science by Gary Smith [who has written a significant number of general public books on personal investment, statistics and AIs] and Jay Cordes from OUP for review a few weeks ago and read it on my trip to Salzburg. This short book contains a lot of anecdotes and what I would qualify of small talk on job experiences and colleagues’ idiosyncrasies…. More fundamentally, it reads as a sequence of examples of bad or misused statistics, as many general public books on statistics do, but with little to say on how to spot such misuses of statistics. Its title (It seems like the 9 pitfalls of… is a rather common début for a book title!) however started a (short) conversation with my neighbour on the train to Salzburg as she wanted to know if the job opportunities in data sciences were better in Germany than in Austria. A practically important question for which I had no clue. And I do not think the book would have helped either! (My neighbour in the earlier plane to München had a book on growing lotus, which was not particularly enticing for launching a conversation either.)

Chapter I “Using bad data” is made of examples of truncated or cherry picked data often associated with poor graphics. Only one dimensional outcome and also very US centric. Chapter II “Data before theory” highlights spurious correlations and post hoc predictions, criticism of data mining, some examples being quite standard. Chapter III “Worshiping maths” sounds like the perfect opposite of the previous cahpter: it discusses the fact that all models are wrong but some may be more wrong than others. And gives examples of over fitting, p-value hacking, regression applied to longitudinal data. With the message that (maths) assumptions are handy and helpful but not always realistic. Chapter IV “Worshiping computers” is about the new golden calf and contains rather standard stuff on trusting the computer output because it is a machine. However, the book is somewhat falling foul of the same mistake by trusting a Monte Carlo simulation of a shortfall probability for retirees since Monte Carlo also depends on a model! Computer simulations may be fine for Bingo night or poker tournaments but much more uncertain for complex decisions like retirement investments. It is also missing the biasing aspects in constructing recidivism prediction models pointed out in Weapons of math destruction. Until Chapter 9 at least. The chapter is also mentioning adversarial attacks if not GANs (!). Chapter V “Torturing data” mentions famous cheaters like Wansink of the bottomless bowl and pizza papers and contains more about p-hacking and reproducibility. Chapter VI “Fooling yourself” is a rather weak chapter in my opinion. Apart from Ioannidis take on Theranos’ lack of scientific backing, it spends quite a lot of space on stories about poker gains in the unregulated era of online poker, with boasts of significant gains that are possibly earned from compulsive gamblers playing their family savings, which is not particularly praiseworthy. And about Brazilian jiu-jitsu. Chapter VII “Correlation vs causation” predictably mentions Judea Pearl (whose book of why I just could not finish after reading one rant too many about statisticians being unable to get causality right! Especially after discussing the book with Andrew.). But not so much to gather from the chapter, which could have instead delved into deep learning and its ways to avoid overfitting. The first example of this chapter is more about confusing conditionals (what is conditional on what?) than turning causation around. Chapter VII “Regression to the mean” sees Galton’s quincunx reappearing here after Pearl’s book where I learned (and checked with Steve Stiegler) that the device was indeed intended for that purpose of illustrating regression to the mean. While the attractive fallacy is worth pointing out there are much worse abuses of regression that could be presented. CHANCE’s Howard Wainer also makes an appearance along SAT scores. Chapter IX “Doing harm” does engage into the issue that predicting social features like recidivism by a (black box) software is highly worrying (and just plain wrong) if only because of this black box nature. Moving predictably to chess and go with the right comment that this does not say much about real data problems. A word of warning about DNA testing containing very little about ancestry, if only because of the company limited and biased database. With further calls for data privacy and a rather useless entry on North Korea. Chapter X “The Great Recession“, which discusses the subprime scandal (as in Stewart’s book), contains a set of (mostly superfluous) equations from Samuelson’s paper (supposed to scare or impress the reader?!) leading to the rather obvious result that the expected concave utility of a weighted average of iid positive rvs is maximal when all the weights are equal, result that is criticised by laughing at the assumption of iid-ness in the case of mortgages. Along with those who bought exotic derivatives whose construction they could not understand. The (short) chapter keeps going through all the (a posteriori) obvious ingredients for a financial disaster to link them to most of the nine pitfalls. Except the second about data before theory, because there was no data, only theory with no connection with reality. This final chapter is rather enjoyable, if coming after the facts. And containing this altogether unnecessary mathematical entry. [Usual warning: this review or a revised version of it is likely to appear in CHANCE, in my book reviews column.]

%d bloggers like this: