Archive for UMPBTs

Bayesian spectacles

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , on October 4, 2017 by xi'an

E.J. Wagenmakers and his enthusiastic team of collaborators at University of Amsterdam and in the JASP software designing team have started a blog called Bayesian spectacles which I find a fantastic title. And not only because I wear glasses. Plus, they got their own illustrator, Viktor Beekman, which sounds like the epitome of sophistication! (Compared with resorting to vacation or cat pictures…)

In a most recent post they addressed the criticisms we made of the 72 author paper on p-values, one of the co-authors being E.J.! Andrew already re-addressed some of the address, but here is a disagreement he let me to chew on my own [and where the Abandoners are us!]:

Disagreement 2. The Abandoners’ critique the UMPBTs –the uniformly most powerful Bayesian tests– that features in the original paper. This is their right (see also the discussion of the 2013 Valen Johnson PNAS paper), but they ignore the fact that the original paper presented a series of other procedures that all point to the same conclusion: p-just-below-.05 results are evidentially weak. For instance, a cartoon on the JASP blog explains the Vovk-Sellke bound. A similar result is obtained using the upper bounds discussed in Berger & Sellke (1987) and Edwards, Lindman, & Savage (1963). We suspect that the Abandoners’ dislike of Bayes factors (and perhaps their upper bounds) is driven by a disdain for the point-null hypothesis. That is understandable, but the two critiques should not be mixed up. The first question is Given that we wish to test a point-null hypothesis, do the Bayes factor upper bounds demonstrate that the evidence is weak for p-just-below-.05 results? We believe they do, and in this series of blog posts we have provided concrete demonstrations.

Obviously, this reply calls for an examination of the entire BS blog series, but being short in time at the moment, let me point out that the upper lower bounds on the Bayes factors showing much more support for H⁰ than a p-value at 0.05 only occur in special circumstances. Even though I spend some time in my book discussing those bounds. Indeed, the [interesting] fact that the lower bounds are larger than the p-values does not hold in full generality. Moving to a two-dimensional normal with potentially zero mean is enough to see the order between lower bound and p-value reverse, as I found [quite] a while ago when trying to expand Berger and Sellker (1987, the same year as I was visiting Purdue where both had a position). I am not sure this feature has been much explored in the literature, I did not pursue it when I realised the gap was missing in larger dimensions… I must also point out I do not have the same repulsion for point nulls as Andrew! While considering whether a parameter, say a mean, is exactly zero [or three or whatever] sounds rather absurd when faced with the strata of uncertainty about models, data, procedures, &tc.—even in theoretical physics!—, comparing several [and all wrong!] models with or without some parameters for later use still makes sense. And my reluctance in using Bayes factors does not stem from an opposition to comparing models or from the procedure itself, which is quite appealing within a Bayesian framework [thus appealing per se!], but rather from the unfortunate impact of the prior [and its tail behaviour] on the quantity and on the delicate calibration of the thing. And on a lack of reference solution [to avoid the O and the N words!]. As exposed in the demise papers. (Which main version remains in a publishing limbo, the onslaught from the referees proving just too much for me!)

Statistical evidence for revised standards

Posted in Statistics, University life with tags , , , , , , , , , on December 30, 2013 by xi'an

In yet another permutation of the original title (!), Andrew Gelman posted the answer Val Johnson sent him after our (submitted)  letter to PNAS. As Val did not send me a copy (although Andrew did!), I will not reproduce it here and I rather refer the interested readers to Andrews’ blog… In addition to Andrew’s (sensible) points, here are a few idle (post-X’mas and pre-skiing) reflections:

  • “evidence against a false null hypothesis accrues exponentially fast” makes me wonder in which metric this exponential rate (in γ?) occurs;
  • that “most decision-theoretic analyses of the optimal threshold to use for declaring a significant finding would lead to evidence thresholds that are substantially greater than 5 (and probably also greater 25)” is difficult to accept as an argument since there is no trace of a decision-theoretic argument in the whole paper;
  • Val rejects our minimaxity argument on the basis that “[UMPBTs] do not involve minimization of maximum loss” but the prior that corresponds to those tests is minimising the integrated probability of not rejecting at threshold level γ, a loss function integrated against parameter and observation, a Bayes risk in other words… Point masses or spike priors are clearly characteristics of minimax priors. Furthermore, the additional argument that “in most applications, however, a unique loss function/prior distribution combination does not exist” has been used by many to refute the Bayesian perspective and makes me wonder what are the arguments left in using a (pseudo-)Bayesian approach;
  • the next paragraph is pure tautology: the fact that “no other test, based on either a subjectively or objectively specified alternative hypothesis, is as likely to produce a Bayes factor that exceeds the specified evidence threshold” is a paraphrase of the definition of UMPBTs, not an argument. I do not see we should solely “worry about false negatives”, since minimising those should lead to a point mass on the null (or, more seriously, should not lead to the minimax-like selection of the prior under the alternative).