Archive for Universidad Carlos III de Madrid

[more than] everything you always wanted to know about marginal likelihood

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , on February 10, 2022 by xi'an

Earlier this year, F. Llorente, L. Martino, D. Delgado, and J. Lopez-Santiago have arXived an updated version of their massive survey on marginal likelihood computation. Which I can only warmly recommend to anyone interested in the matter! Or looking for a base camp to initiate a graduate project. They break the methods into four families

  1. Deterministic approximations (e.g., Laplace approximations)
  2. Methods based on density estimation (e.g., Chib’s method, aka the candidate’s formula)
  3. Importance sampling, including sequential Monte Carlo, with a subsection connecting with MCMC
  4. Vertical representations (mostly, nested sampling)

Besides sheer computation, the survey also broaches upon issues like improper priors and alternatives to Bayes factors. The parts I would have done in more details are reversible jump MCMC and the long-lasting impact of Geyer’s reverse logistic regression (with the noise contrasting extension), even though the link with bridge sampling is briefly mentioned there. There is even a table reporting on the coverage of earlier surveys. Of course, the following postnote of the manuscript

The Christian Robert’s blog deserves a special mention , since Professor C. Robert has devoted several entries of his blog with very interesting comments regarding the marginal likelihood estimation and related topics.

does not in the least make me less objective! Some of the final recommendations

  • use of Naive Monte Carlo [simulate from the prior] should be always considered [assuming a proper prior!]
  • a multiple-try method is a good choice within the MCMC schemes
  • optimal umbrella sampling estimator is difficult and costly to implement , so its best performance may not be achieved in practice
  • adaptive importance sampling uses the posterior samples to build a suitable normalized proposal, so it benefits from localizing samples in regions of high posterior probability while preserving the properties of standard importance sampling
  • Chib’s method is a good alternative, that provide very good performances [but is not always available]
  • the success [of nested sampling] in the literature is surprising.

SMC 22 coming soon!

Posted in Statistics with tags , , , , , , , , , on February 7, 2022 by xi'an

The 5th Workshop on Sequential Monte Carlo Methods (SMC 2022) will take place in Madrid on 4-6 May 2022. More precisely on the Leganés campus of Universidad Carlos III de Madrid. Registrations are now open, with very modest registration fees and the list of invited speakers is available on the webpage of the workshop. (The SMC 2020 workshop was cancelled due to the COVID-19 pandemic. An earlier workshop took place at CREST in 2015.)

SMC 2020 [en Madrid]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on January 30, 2020 by xi'an

Palacio Real from Casa del Campo, on Nov. 10, 2011, during a pleasant bike ride through the outskirts of Madrid and along the renovated banks of Rio ManzanaresAn announcement for the incoming SMC 2020 workshop, taking place in Madrid next 27-29 of May! The previous workshops were in Paris in 2015 (at ENSAE-CREST) and Uppsala in 2017.  This workshop is organised by my friends Víctor Elvira and Joaquín Míguez. With very affordable registration fees and an open call for posters. Here are the invited speakers (so far):

Deniz Akyildiz (University of Warwick)
Christophe Andrieu (University of Bristol)
Nicolas Chopin (ENSAE-CREST)
Dan Crisan (Imperial College London)
Jana de Wiljes (University of Potsdam)
Pierre Del Moral (INRIA)
Petar M. Djuric (Stony Brook University)
Randal Douc (TELECOM SudParis)
Arnaud Doucet (University of Oxford)
Ajay Jasra (National University of Singapore)
Nikolas Kantas (Imperial College London)
Simon Maskell (University of Liverpool)
Lawrence Murray (Uber AI)
François Septier (Université Bretagne Sud)
Sumeetpal Singh (University of Cambridge)
Arno Solin (Aalto University)
Matti Vihola (University of Jyväskylä)
Anna Wigren (Uppsala University)

independent random sampling methods [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on May 16, 2018 by xi'an

Last week, I had the pleasant surprise to receive a copy of this book in the mail. Book that I was not aware had been written or published (meaning that I was not involved in its review!). The three authors, Luca Martino, David Luengo, and Joaquín Míguez, of Independent Random Sampling Methods are from Madrid universities and I have read (and posted on) several of their papers on (population) Monte Carlo simulation in the recent years. Including Luca’s survey of multiple try MCMC which was helpful in writing our WIREs own survey.

The book is a pedagogical coverage of most algorithms used to simulate independent samples from a given distribution, which of course recoups some of the techniques exposed with more details by [another] Luc, namely Luc Devroye’s Non-uniform random variate generation bible, often mentioned here (and studied in uttermost details by a dedicated reading group in Warwick). It includes a whole chapter on accept-reject methods, with in particular a section on Payne-Dagpunar’s band rejection I had not seen previously. And another entire chapter on ratio-of-uniforms techniques. On which the three authors had proposed generalisations [covered by the book], years before I attempted to go the same way, having completely forgotten reading their paper at the time… Or the much earlier 1991 paper by Jon Wakefield, Alan Gelfand and Adrian Smith!

The book also covers the “vertical density representation”, due to Troutt (1991), which consists in considering the distribution of the density p(.) of the random variable X as a random variable, p(X). I remember pondering about this alternative to the cdf transform and giving up on it as the outcome has a distribution depending on p, even when the density is monotonous. Even though I am not certain from reading the section that this is particularly appealing…

Given its title, the book contains very little about MCMC. Except for a last and final chapter that covers adaptive independent Metropolis-Hastings algorithms, in connection with some of the authors’ recent work. Like multiple try Metropolis. Relating to the (unidimensional) ARMS “ancestor” of adaptive MCMC methods. (As noted in a recent blog on Holden et al., 2009 , I have trouble understanding how recycling only rejected proposed values to build a better proposal distribution is enough to guarantee convergence of an adaptive algorithm, but the book does not delve much into this convergence.)

All in all and with the bias induced by me working in the very area, I find the book quite a nice entry on the topic, which can be used in a Monte Carlo course at both undergraduate and graduate levels if one want to avoid going into Markov chains. It is certainly less likely to scare students away than the comprehensive Non-uniform random variate generation and on the opposite may induce some of them to pursue a research career in this domain.

bootstrap(ed) likelihood for ABC

Posted in pictures, Statistics with tags , , , , , , , , on November 6, 2015 by xi'an

AmstabcThis recently arXived paper by Weixuan Zhu , Juan Miguel Marín, and Fabrizio Leisen proposes an alternative to our empirical likelihood ABC paper of 2013, or BCel. Besides the mostly personal appeal for me to report on a Juan Miguel Marín working [in Madrid] on ABC topics, along my friend Jean-Michel Marin!, this paper is another entry on ABC that connects with yet another statistical perspective, namely bootstrap. The proposal, called BCbl, is based on a reference paper by Davison, Hinkley and Worton (1992) which defines a bootstrap likelihood, a notion that relies on a double-bootstrap step to produce a non-parametric estimate of the distribution of a given estimator of the parameter θ. This estimate includes a smooth curve-fitting algorithm step, for which little description is available from the current paper. The bootstrap non-parametric substitute then plays the role of the actual likelihood, with no correction for the substitution just as in our BCel. Both approaches are convergent, with Monte Carlo simulations exhibiting similar or even identical convergence speeds although [unsurprisingly!] no deep theory is available on the comparative advantage.

An important issue from my perspective is that, while the empirical likelihood approach relies on a choice of identifying constraints that strongly impact the numerical value of the likelihood approximation, the bootstrap version starts directly from a subjectively chosen estimator of θ, which may also impact the numerical value of the likelihood approximation. In some ABC settings, finding a primary estimator of θ may be a real issue or a computational burden. Except when using a preliminary ABC step as in semi-automatic ABC. This would be an interesting crash-test for the BCbl proposal! (This would not necessarily increase the computational cost by a large amount.) In addition, I am not sure the method easily extends to larger collections of summary statistics as those used in ABC, in particular because it necessarily relies on non-parametric estimates, only operating in small enough dimensions where smooth curve-fitting algorithms can be used. Critically, the paper only processes examples with a few parameters.

The comparisons between BCel and BCbl that are produced in the paper show some gain towards BCbl. Obviously, it depends on the respective calibrations of the non-parametric methods and of regular ABC, as well as on the available computing time. I find the population genetic example somewhat puzzling: The paper refers to our composite likelihood to set the moment equations. Since this is a pseudo-likelihood, I wonder how the authors do select their parameter estimates in the double-bootstrap experiment. And for the Ising model, it is not straightforward to conceive of a bootstrap algorithm on an Ising model: (a) how does one subsample pixels and (b) what are the validity guarantees for the estimation procedure.

%d bloggers like this: