Archive for University of Oxford

anytime algorithm

Posted in Books, Statistics with tags , , , , , , , , , on January 11, 2017 by xi'an

Lawrence Murray, Sumeet Singh, Pierre Jacob, and Anthony Lee (Warwick) recently arXived a paper on Anytime Monte Carlo. (The earlier post on this topic is no coincidence, as Lawrence had told me about this problem when he visited Paris last Spring. Including a forced extension when his passport got stolen.) The difficulty with anytime algorithms for MCMC is the lack of exchangeability of the MCMC sequence (except for formal settings where regeneration can be used).

When accounting for duration of computation between steps of an MCMC generation, the Markov chain turns into a Markov jump process, whose stationary distribution α is biased by the average delivery time. Unless it is constant. The authors manage this difficulty by interlocking the original chain with a secondary chain so that even- and odd-index chains are independent. The secondary chain is then discarded. This provides a way to run an anytime MCMC. The principle can be extended to K+1 chains, run one after the other, since only one of those chains need be discarded. It also applies to SMC and SMC². The appeal of anytime simulation in this particle setting is that resampling is no longer a bottleneck. Hence easily distributed among processors. One aspect I do not fully understand is how the computing budget is handled, since allocating the same real time to each iteration of SMC seems to envision each target in the sequence as requiring the same amount of time. (An interesting side remark made in this paper is the lack of exchangeability resulting from elaborate resampling mechanisms, lack I had not thought of before.)

learning and inference for medical discovery in Oxford [postdoc]

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , , on January 10, 2017 by xi'an

[Here is a call for a two-year postdoc in Oxford sent to me by Arnaud Doucet. For those worried about moving to Britain, I think that, given the current pace—or lack thereof—of the negotiations with the EU, it is very likely that Britain will not have Brexited two years from now.]

Numerous medical problems ranging from screening to diagnosis to treatment of chronic diseases to  management of care in hospitals requires the development of novel statistical models and methods. These models and methods need to address the unique characteristics of medical data such as sampling bias, heterogeneity, non-stationarity, informative censoring etc. Existing state-of-the-art machine learning and statistics techniques often fail to exploit those characteristics. Additionally, the focus needs to be on probabilistic models which are
interpretable by the clinicians so that the inference results can be integrated within the medical-decision making.

We have access to unique datasets for clinical deterioration of patients in the hospital, for cancer screening, and for treatment of chronic diseases. Preliminary work has been tested and implemented at UCLA Medical Center, resulting in significantly management care in this hospital.

The successful applicant will be expected to develop new probabilistic models and learning methods inspired by these applications. The focus will be primarily on methodological and theoretical developments, and involve collaborating with Oxford researchers in machine learning, computational statistics and medicine to bring these developments to practice.

The post-doctoral researcher will be jointly supervised by Prof. Mihaela van der Schaar and Prof. Arnaud Doucet. Both of them have a strong track-record in advising PhD students and post-doctoral researchers who subsequently became successful academics in statistics, engineering sciences, computer science and economics. The position is for 2 years.

analysing the US election result, from Oxford, England

Posted in pictures, R, Statistics, Travel, University life with tags , on November 14, 2016 by xi'an

Holywell St., Oxford, Feb. 22, 2012Seth Flaxman (Oxford), Dougal J. Sutherland (UCL), Yu-Xiang Wang (CMU), and Yee Whye Teh (Oxford), published on arXiv this morning an analysis of the US election, in what they called most appropriately a post-mortem. Using ecological inference already employed after Obama’s re-election. And producing graphs like the following one:elecons

David Cox gets the first International Prize in Statistics

Posted in pictures, Statistics, University life with tags , , , , , , , , on October 20, 2016 by xi'an

Just received an email from the IMS that Sir David Cox (Nuffield College, Oxford) has been awarded the International Prize in Statistics. As discussed earlier on the ‘Og, this prize is intended to act as the equivalent of a Nobel prize for statistics. While I still have reservations about the concept. I have none whatsoever about the nomination as David would have been my suggestion from the start. Congratulations to him for the Prize and more significantly for his massive contributions to statistics, with foundational, methodological and societal impacts! [As Peter Diggle, President of the Royal Statistical Society just pointed out, it is quite fitting that it happens on European Statistics day!]

and another position in Oxford

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , on July 20, 2016 by xi'an

St. Edmund Hall, Oxford, Feb. 01, 2016After a position in Bristol advertised a few days ago, I want to point out there also is a position opening in Oxford, Department of Statistics, in conjunction with a fellowship from University College. The deadline is August 26, 2016, and applicants should contact Professor Arnaud Doucet for details.

biostatistician postdoc in stratified medicine with genomics

Posted in Kids, Statistics, Travel, University life with tags , , , on July 6, 2016 by xi'an

Another postdoctoral offer:jobxord

afternoon on Bayesian computation

Posted in Statistics, Travel, University life with tags , , , , , , , , , , , , , on April 6, 2016 by xi'an

Richard Everitt organises an afternoon workshop on Bayesian computation in Reading, UK, on April 19, the day before the Estimating Constant workshop in Warwick, following a successful afternoon last year. Here is the programme:

1230-1315  Antonietta Mira, Università della Svizzera italiana
1315-1345  Ingmar Schuster, Université Paris-Dauphine
1345-1415  Francois-Xavier Briol, University of Warwick
1415-1445  Jack Baker, University of Lancaster
1445-1515  Alexander Mihailov, University of Reading
1515-1545  Coffee break
1545-1630  Arnaud Doucet, University of Oxford
1630-1700  Philip Maybank, University of Reading
1700-1730  Elske van der Vaart, University of Reading
1730-1800  Reham Badawy, Aston University
1815-late  Pub and food (SCR, UoR campus)

and the general abstract:

The Bayesian approach to statistical inference has seen major successes in the past twenty years, finding application in many areas of science, engineering, finance and elsewhere. The main drivers of these successes were developments in Monte Carlo methods and the wide availability of desktop computers. More recently, the use of standard Monte Carlo methods has become infeasible due the size and complexity of data now available. This has been countered by the development of next-generation Monte Carlo techniques, which are the topic of this meeting.

The meeting takes place in the Nike Lecture Theatre, Agriculture Building [building number 59].